Advertisement

Photovoltaic Performances of Yb Doped CdTe QDs Sensitized TiO2 Photoanodes for Solar cell Applications

  • Ayyaswamy ArivarasanEmail author
  • Sambandam Bharathi
  • Sozhan Ezhilarasi
  • Surulinathan Arunpandiyan
  • Ramasamy Jayavel
Article
  • 102 Downloads

Abstract

In this work, Yb doped CdTe QDs sensitized TiO2 photoanodes were fabricated for quantum dots sensitized solar cells (QDSSC) and their photovoltaic response were studied. Pure CdTe QDs and Yb doped CdTe QDs were prepared in aqueous phase by using mercaptosuccinic acid as a capping agent. The influence of dopant material on structural properties of CdTe QDs were studied by XRD analysis, which confirms that prepared QDs belongs to cubic zinc blende crystalline structure and the size of CdTe QDs were decreased with increasing dopant concentration. The dopant concentration dependent optical properties were studied by UV–vis absorption and fluorescence emission studies. Elemental composition of pure and Yb doped CdTe QDs were examined by EDX analysis and their formation were studied by XPS analysis. Capping of MSA molecules over CdTe QDs was confirmed by FT-IR analysis. Photovoltaic performance of pure and Yb doped CdTe QDs sensitized TiO2 photoanodes was studied by fabrication of QDSSC using polysulfide electrolyte. J–V characteristic curves reveal the enhanced solar cell efficiency of Yb doped CdTe QDs sensitized photoanodes.

Keywords

CdTe Doped quantum dots Photoanodes Quantum dots sensitized solar cells Photovoltaics 

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

none

References

  1. 1.
    O.W. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).  https://doi.org/10.1126/science.1209845 CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, Quantum dot solar cells, semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).  https://doi.org/10.1021/jp806791s CrossRefGoogle Scholar
  3. 3.
    P.V. Kamat, Quantum dot solar cells, the next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013).  https://doi.org/10.1021/jz400052e CrossRefGoogle Scholar
  4. 4.
    W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, X.Y. Zhu, Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).  https://doi.org/10.1126/science.1185509 CrossRefGoogle Scholar
  5. 5.
    W. Schokley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).  https://doi.org/10.1063/1.1736034 CrossRefGoogle Scholar
  6. 6.
    A. Zaban, O.I. Micic, B.A. Gregg, A.J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14, 3153–3156 (1998).  https://doi.org/10.1021/la9713863 CrossRefGoogle Scholar
  7. 7.
    A. Wang, Z. Jiang, L. Wei, Y. Chen, J. Jiao, M. Eastman, H. Liu, Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energy 1, 440–447 (2012).  https://doi.org/10.1016/j.nanoen.2012.02.005 CrossRefGoogle Scholar
  8. 8.
    C. Chen, M. Ye, M. Lv, C. Gong, W. Guo, C. Lin, Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells. Electrochim. Acta 121, 175–182 (2014).  https://doi.org/10.1016/j.electacta.2013.12.106 CrossRefGoogle Scholar
  9. 9.
    H. Rao, W. Wu, Y. Liu, Y. Xu, B. Chen, H. Chen, D. Kuang, C. Su, CdS/CdSe cosensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy 8, 1–8 (2014).  https://doi.org/10.1016/j.nanoen.2014.05.003 CrossRefGoogle Scholar
  10. 10.
    Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys. Chem. Chem. Phys. 14, 6479–6486 (2012).  https://doi.org/10.1039/C2CP40568G CrossRefGoogle Scholar
  11. 11.
    Y. Xu, W. Wu, H. Rao, H. Chen, D. Kuang, C. Su, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy 11, 621–630 (2015).  https://doi.org/10.1016/j.nanoen.2014.11.045 CrossRefGoogle Scholar
  12. 12.
    D. Wu, S. Zhang, S. Jiang, J. He, K. Jiang, Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells. J. Alloy. Compd. 624, 94–99 (2015).  https://doi.org/10.1016/j.jallcom.2014.11.087 CrossRefGoogle Scholar
  13. 13.
    N.T.N. Truong, C. Park, Synthesis and characterization of tin disulfide nanocrystals for hybrid bulk hetero-junction solar cell applications. Electron. Mater. Lett. 12, 308–314 (2016).  https://doi.org/10.1007/s13391-015-5266-8 CrossRefGoogle Scholar
  14. 14.
    M. Liu, F.P.G. Arquer, Y. Li, X. Lan, G. Kim, O. Voznyy, L.K. Jagadamma, A.S. Abbas, S. Hoogland, Z. Lu, J.Y. Kim, A. Amassian, E.H. Sargent, Double-sided junctions enable high-performance colloidal-quantum-dot photovoltaics. Adv. Mater. 28, 4142–4148 (2016).  https://doi.org/10.1002/adma.201506213 CrossRefGoogle Scholar
  15. 15.
    Z. Peng, Y. Liu, Y. Zhao, K. Chen, Y. Cheng, W. Chen, Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells. Electrochim. Acta 135, 276–283 (2014).  https://doi.org/10.1016/j.electacta.2014.05.019 CrossRefGoogle Scholar
  16. 16.
    G.D. Scholes, Insights into excitons confined to nanoscale systems: electron-hole interaction, binding energy, and photodissociation. ACS Nano, 2 (2008) 523–537. https://pubs.acs.org/doi/  https://doi.org/10.1021/nn700179k
  17. 17.
    D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots. Particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009).  https://doi.org/10.1002/adfm.200801173 CrossRefGoogle Scholar
  18. 18.
    Z.W. Ren, J. Wang, Z.X. Pan, K. Zhao, H. Zhang, Y. Li, Y.X. Zhao, I.M. Sero, J. Bisquert, X.H. Zhong, Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%, Chem. Mater. 27 (2015) 8398–8405. https://pubs.acs.org/doi/abs/  https://doi.org/10.1021/acs.chemmater.5b03864
  19. 19.
    F. Huang, L. Zha, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, G. Cao, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8, 34482–34489 (2016).  https://doi.org/10.1021/acsami.6b12842 CrossRefGoogle Scholar
  20. 20.
    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015).  https://doi.org/10.1039/C5CC06759F CrossRefGoogle Scholar
  21. 21.
    Z. Huang, X. Zou, H. Zhou, A strategy to achieve superior photocurrent by Cu-doped quantum dot sensitized solar cells. Mater. Lett. 95, 139–141 (2013).  https://doi.org/10.1016/j.matlet.2012.12.095 CrossRefGoogle Scholar
  22. 22.
    Y.R. Smith, G. Ruchi, A. Merwin, S.K. Mohanty, D. Chidambaram, M. Misra, Anodic titania nanotube arrays sensitized with Mn- or Co-doped CdS nanocrystals. Electrochim. Acta 135, 503–512 (2014).  https://doi.org/10.1016/j.electacta.2014.05.005 CrossRefGoogle Scholar
  23. 23.
    A. Ayyaswamy, S. Ganapathy, A. Alsalme, A. Alghamdi, J. Ramasamy, Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells. Superlattice Microstruct. 88, 634–644 (2015).  https://doi.org/10.1016/j.spmi.2015.10.032 CrossRefGoogle Scholar
  24. 24.
    W. Lee, W.-C. Kwak, S.K. Min, J.-C. Lee, W.-S. Chae, Y.-M. Sung, S.-H. Han, Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem. Commun. 10, 1699–1702 (2008).  https://doi.org/10.1016/j.elecom.2008.08.025 CrossRefGoogle Scholar
  25. 25.
    J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Yu, D. Li, Y. Luo, Q. Meng, Highly efficient core–shell CuInS2–Mn doped CdS quantum dot sensitized solar cells. Chem. Comm. 49, 3881–3883 (2013).  https://doi.org/10.1039/C3CC40715B CrossRefGoogle Scholar
  26. 26.
    B. Wang, J. Zhang, Y. Hu, S. Wang, R. Liu, C. He, X. Wang, H. Wang, Role of Co2+ incorporation in significant photocurrent enhancement of electrochemical deposited CdSe quantum dots sensitized TiO2 nanorod arrays solar cells. Int. J. Electrochem. Sci. 8, 7175–7186 (2013)Google Scholar
  27. 27.
    M.Y. El zayat, A.O. Saed, M.S. El-Dessouki, Dye sensitization of antimony-doped CdS photoelectrochemical solar cell. Sol. Energy Mater. Sol. Cells 71, 27–39 (2002).  https://doi.org/10.1016/S0927-0248(01)00042-3 CrossRefGoogle Scholar
  28. 28.
    A. Morales-Acevedo, Thin film CdS/CdTe solar cells: research perspectives. Sol. Energy 80, 675–681 (2006).  https://doi.org/10.1016/j.solener.2005.10.008 CrossRefGoogle Scholar
  29. 29.
    D.W. Lane, A review of the optical band gap of thin film CdSxTe1–x.. Sol. Energy Mater. Sol. Cells 90, 1169–1175 (2006).  https://doi.org/10.1016/j.solmat.2005.07.003 CrossRefGoogle Scholar
  30. 30.
    H. Scheel, T. Fukuda, C.G. Technology, Wiley, Chichester 2003Google Scholar
  31. 31.
    A. Arivarasan, S. Bharathi, V. Vijayaraj, G. Sasikala, R. Jayavel, Evaluation of reaction parameters dependent optical properties and its photovoltaics performances of CdTe QDs. J. Inorg. Organomet. Polym. 28, 1262–1275 (2018).  https://doi.org/10.1007/s10904-018-0803-1 CrossRefGoogle Scholar
  32. 32.
    A. Badawi, N. Al-Hosiny, S. Abdallah, S. Nagm, H. Talaat, CdTe quantum dots sensitized TiO2 electrodes for photovoltaic cells. J. Mater. Sci. Eng. A 1, 942–947 (2011)Google Scholar
  33. 33.
    J. Tan, Y. Liang, J. Wang, J. Chen, B. Sun, L. Shao, Facile synthesis of CdTe-based quantum dots promoted by mercaptosuccinic acid and hydrazine. New J. Chem. 39, 4488–4493 (2015).  https://doi.org/10.1039/c5nj00075k CrossRefGoogle Scholar
  34. 34.
    N. Hamnabard, Y. Hanifehpour, B. Khomami, S.W. Joo, Synthesis, characterization and photocatalytic performance of Yb-doped CdTe nanoparticles. Mater. Lett. 145, 253–257 (2015).  https://doi.org/10.1016/j.matlet.2015.01.074 CrossRefGoogle Scholar
  35. 35.
    M.S. Abd El-sadek, S.M. Babu, A controlled approach for synthesizing CdTe@CrOOH (core-shell) composite nanoparticles. Curr. Appl. Phys. 11, 926–932 (2011).  https://doi.org/10.1016/j.cap.2010.12.022 CrossRefGoogle Scholar
  36. 36.
    T. Erdmenger, J. Vitz, F. Wiesbrock, U.S. Schubert, Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. J. Mater. Chem. 18, 5267–5273 (2008).  https://doi.org/10.1039/B807119E CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ayyaswamy Arivarasan
    • 1
    Email author
  • Sambandam Bharathi
    • 2
  • Sozhan Ezhilarasi
    • 1
  • Surulinathan Arunpandiyan
    • 1
  • Ramasamy Jayavel
    • 3
  1. 1.Department of Physics, International Research CentreKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Department of Physics and NanotechnologySRM UniversityKattankulathurIndia
  3. 3.Centre for Nanoscience and TechnologyAnna UniversityChennaiIndia

Personalised recommendations