Advertisement

Novel Superthermite Nanocomposite Hybrid Material Based on CuO Coated Carbon Nanofibers for Advanced Energetic Systems

  • Sherif Elbasuney
  • M. Gaber Zaky
  • Rakesh P. Sahu
  • Ishwar K. Puri
  • Mostafa Radwan
Article
  • 51 Downloads

Abstract

The surfaces of carbon nanofibers (CNFs) were first pretreated with a catalyst to enable metal deposition and subsequently coated with a nanoscale layer of copper through electroless deposition. The resulting Cu-coated CNF hybrid was annealed at 250 °C to obtain CuO-coated CNFs that were ultrasonically suspended with aluminum nanoparticles (100 nm) in isopropyl alcohol to produce nanothermite colloid; where CuO coating can act as an effective oxidizer for Al nanoparticles. The developed nanothermite colloid was integrated and effectively dispersed in molten tri-nitro toluene (TNT). This novel colloid offers an increase in TNT shock wave strength of by 26% using a ballistic mortar test. Moreover it offers an increase total heat release by 75% using DSC. This is the first time ever to report on nanothermite particles supported on CNFs for highly energetic systems.

Keywords

Electroless plating Nanoparticles Carbon nanofibers Nanothermites Energetic materials 

Notes

References

  1. 1.
    K.B. Teo et al., Catalytic synthesis of carbon nanotubes and nanofibers. Encycl. Nanosci. Nanotechnol. 10(1), (2003)Google Scholar
  2. 2.
    E. Hammel et al., Carbon nanofibers for composite applications. Carbon, 42(5), 1153–1158 (2004)CrossRefGoogle Scholar
  3. 3.
    I. Kim, S. Lee, Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure. Scripta Mater. 52(10), 1045–1049 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Arai et al., Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 6(10), 1029–1031 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Melchionna et al., Carbon nanotubes and catalysis: the many facets of a successful marriage. Catal. Sci. Technol. 5(8), 3859–3875 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Arai, M. Endo, Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. Commun. 5(9), 797–799 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Arai et al., Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon, 42(3), 641–644, (2004)CrossRefGoogle Scholar
  8. 8.
    K. Yamagishi et al., Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating. J. Surf. Finish. Soc. Jpn. 54(2), 150–154 (2003)CrossRefGoogle Scholar
  9. 9.
    A.M. Abdalla et al., Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties. Mater. Res. Express 3(12), 125014 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Li et al., Coating of carbon nanotube with nickel by electroless plating method. Japan. J. Appl. Phys. 36(4), 501–503 (1997)CrossRefGoogle Scholar
  11. 11.
    V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67(13), 1920–1928 (1995)CrossRefGoogle Scholar
  12. 12.
    S. Elbasuney et al., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)CrossRefGoogle Scholar
  13. 13.
    A.K. Mohamed, Experimental and Numerical Modelling of Explosion Conversion and Effects, M. Sc., 2013Google Scholar
  14. 14.
    S. Elbasuney et al., Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture Fuel, 208, 296–304, (2017)Google Scholar
  15. 15.
    J.A. Conkling, C. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC press, Boca Raton, 2010)CrossRefGoogle Scholar
  16. 16.
    N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants, Explos., Pyrotech. 37(2), 143–155 (2012)CrossRefGoogle Scholar
  17. 17.
    S.H. Fischer, M.C. Grubelich, The use of Combustible Metals in Explosive Incendiary Devices (Sandia National Labs., Albuquerque, NM 1996)Google Scholar
  18. 18.
    T.H. Klapötke, High Energy Density Mater. 125, (2007)Google Scholar
  19. 19.
    M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants, Explos., Pyrotech. 30, 53–62 (2005)CrossRefGoogle Scholar
  20. 20.
    D.L. Hastings, E.L. Dreizin, Reactive structural materials: preparation and characterization. Adv. Eng. Mater. 20, 1700631 (2018)CrossRefGoogle Scholar
  21. 21.
    Andréa, Nicollet et al., Investigation of Al/CuO multilayered thermite ignition. J. Appl. Phys. 121, (2017)Google Scholar
  22. 22.
    C. Rossi, Two Decades of Research on Nano-Energetic Materials. Propellants, Explos., Pyrotech. 39, 323–327 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Rossi, D. Esteve, Micropyrotechnics, a new technology for making energetic microsystems: review and prospective. Sens. Actuators A. 120, 297–310 (2005)CrossRefGoogle Scholar
  24. 24.
    S.-M. Bak et al., Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition. J. Mater. Chem. 21, 1984–1990 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Jagannatham et al., Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites. Appl. Surf. Sci. 324, 475–481 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Sahoo, S.K. Das, Tribology of electroless nickel coatings–a review. Mater.Des. 32, 1760–1775 (2011)CrossRefGoogle Scholar
  27. 27.
    L.-M. Ang et al., Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115–2118 (1999)CrossRefGoogle Scholar
  28. 28.
    F. Wang et al., The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon, 43, 1716–1721, (2005)CrossRefGoogle Scholar
  29. 29.
    M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results. Propellants, Explos., Pyrotech. 24, 280–285 (1999)CrossRefGoogle Scholar
  30. 30.
    T. Tillotson et al., Sol–gel processing of energetic materials. J. Non-Cryst. Solids 225, 358–363 (1998)CrossRefGoogle Scholar
  31. 31.
    S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sherif Elbasuney
    • 1
  • M. Gaber Zaky
    • 1
  • Rakesh P. Sahu
    • 3
  • Ishwar K. Puri
    • 2
    • 3
  • Mostafa Radwan
    • 4
  1. 1.School of Chemical EngineeringMilitary Technical CollegeCairoEgypt
  2. 2.Department of Mechanical EngineeringMcMaster UniversityHamiltonCanada
  3. 3.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada
  4. 4.British University in EgyptElshorouk City, CairoEgypt

Personalised recommendations