Advertisement

Copper(II) Removal from Aqueous Solutions by PANI-Clay Hybrid Material: Fabrication, Characterization, Adsorption and Kinetics Study

  • H. Soltani
  • A. Belmokhtar
  • F. Z. Zeggai
  • A. BenyoucefEmail author
  • S. Bousalem
  • K. Bachari
Article
  • 29 Downloads

Abstract

In this study, polyaniline/Clay nanomaterials (PANI/Clay) was synthesized through one-step method and used as an adsorbent to remove Cu(II) ions from aqueous solution. The PANI/Clay was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, cyclic voltammograms and physical adsorption of gases. Adsorption parameters such as contact time, pH value, and initial metal ion concentration were investigated. The results revealed that PANI/Clay exhibits a much higher adsorption capacity than the natural clay; the attractive adsorption capacity reached 22.77 mg/g with 0.05 g of 100 mg PANI/Clay at an initial pH solution of 6 and adsorption temperature of 25 °C. Moreover, the Langmuir model well describes the adsorption data with the maximum sorption capacity of 22.77 mg/g. Pseudo-second-order model can fit well the kinetic data obtained from batch Cu(II) removal experiments. The Cu(II) adsorption on PANI/Clay nanocomposite was mainly attributed to electrostatic interaction, donor–acceptor interaction and intermolecular interactions.

Keywords

PANI/Clay Cu(II) ions Adsorption Isotherms Kinetics 

Notes

Acknowledgements

The authors would like to thank the General Management of Scientific Research and Technological Development (DGRSDT) Algeria. Prof. Abdelghani Benyoucef would like to thank Prof Emilia Morallon of Instituto Universitario de Materiales, Alicante University (Spain) for the analysis.

References

  1. 1.
    P.J. Collins, M.J. Kotterman, J.A. Field, A.D. Dobson, Oxidation of anthracene and benzo[a]pyrene by laccases from trametes versicolor. Appl. Environ. Microbiol. 62, 4563–4567 (1996)Google Scholar
  2. 2.
    A. Majcherczyk, C. Johannes, A. Hüttermann, Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of trametes versicolor. Enzym. Microb. Technol. 22, 335–341 (1998)CrossRefGoogle Scholar
  3. 3.
    H. Ali, Biodegradation of synthetic dyes-a review. Water Air Soil Pollut. 213, 251–273 (2010)CrossRefGoogle Scholar
  4. 4.
    E. Guibal, J. Roussy, Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 67, 33–42 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Xu, D.D.L. Liu, L. He, Adsorption of Copper(II) from an wastewater effluent of electroplating industry by poly(ethyleneimine)-functionalized silica. Iran. J. Chem. Chem. Eng. 34, 73–81 (2015)Google Scholar
  6. 6.
    S.H. Ahmadi, P. Davar, A. Manbohi, Adsorptive removal of reactive orange 122 from aqueous solutions by ionic liquid coated Fe3O4 magnetic nanoparticles as an efficient adsorbent. Iran. J. Chem. Chem. Eng. 35, 63–73 (2016)Google Scholar
  7. 7.
    V.K. Gupta, R. Jain, S. Varshney, Electrochemical removal of the hazardous dye reactofix red 3 BFN from industrial effluents. J. Colloid Interface Sci. 312, 292–296 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Ishaq, K. Saee, I. Ahmad, S. Sultan, Coal ash as a low cost adsorbent for the removal of xylenol orange from aqueous solution. Iran. J. Chem. Chem. Eng. 33, 53–58 (2014)Google Scholar
  9. 9.
    K.Y. Foo, B.H. Hameed, Preparation of activated carbon from date stones by microwave induced chemical activation: application for methylene blue adsorption. Chem. Eng. J. 170, 338–341 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Wang, R. Yang, Y. Zhang, A study of applying green glucose-reduced graphene oxide in advanced treatment of different dyes. Desalin. Water Treat. 70, 387–393 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.E. Miao, R. Wang, D. Chen, Z. Liu, T. Liu, Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl. Mater. Interfaces 4, 5353–5359 (2012)CrossRefGoogle Scholar
  12. 12.
    M.M. Ayad, A.A. El-Nasr, Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J. Phys. Chem. C 114, 14377–14383 (2010)CrossRefGoogle Scholar
  13. 13.
    V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, S.K. Kannan, Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth. Met. 162, 974–980 (2012)CrossRefGoogle Scholar
  14. 14.
    V. Janaki, K. Vijayaraghavan, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, Synthesis, characterization and application of cellulose/polyaniline nanocomposite for the treatment of simulated textile effluent. Cellulose 20, 1153–1166 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, L. Gao, L. Shan, R. Wang, Y. Min, Comparative study on the adsorption of NO2 using different clay/polyaniline composites. Ind. Eng. Chem. Res. 57, 6897–6903 (2018)CrossRefGoogle Scholar
  16. 16.
    V. Janaki, K. Vijayaraghavan, A.K. Ramasamy, K.J. Lee, B.T. Oh, S.K. Kannan, Competitive adsorption of reactive orange 16 and reactive brilliant blue R on polyaniline/bacterial extracellular polysaccharides composite-A novel eco-friendly polymer. J. Hazard. Mater. 241–242, 110–117 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Karthik, S. Meenakshi, Facile synthesis of cross linked-chitosan-grafted polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 67, 210–219 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Lei, X. Qian, J. Shen, X. An, Integrated reductive/adsorptive detoxification of Cr(VI)-contaminated water by polypyrrole/cellulose fiber composite. Ind. Eng. Chem. Res. 51, 10408–10415 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Karthik, S. Meenakshi, Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 263, 168–177 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Karthik, S. Meenakshi, Synthesis, characterization and Cr(VI) uptake study of polyaniline coated chitin. Int. J. Biol. Macromol. 72, 235–242 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Larous, A.H. Meniai, Removal of copper(II) from aqueous solution by agricultural by-products sawdust. Energy Proced. 18, 915–923 (2012)CrossRefGoogle Scholar
  22. 22.
    E. Igberase, P. Osifo, A. Ofomaja, The adsorption of copper(II) ions by polyaniline graft chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J. Environ. Chem. Eng. 2, 362–369 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Xue, F. Li, Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica. Microporous Mesoporous Mater. 116, 116–122 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Q. Huang, M. Liu, J. Tian, G. Zeng, Z. Li, K. Wang, Q. Zhang, Q. Wan, F. Deng, Y. We, Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2 + removal. Appl. Surf. Sci. 343, 19–27 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Xie, Q. Huang, M. Liu, K. Wang, Q. Wan, F. Deng, L. Lu, X. Zhang, Y. Wei, Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv. 5, 68430–68438 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, Q. Huang, F. Deng, H. Huang, Q. Wan, M. Liu, Y. Wei, Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl. Mater. Today 7, 222–238 (2017)CrossRefGoogle Scholar
  27. 27.
    W. Jiang, W. Wang, B. Pan, Q. Zhang, W. Zhang, L. Lv, Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl. Mater. Interfaces 6, 3421–3426 (2014)CrossRefGoogle Scholar
  28. 28.
    Q. Huang, M. Liu, J. Chen, K. Wang, D. Xu, F. Deng, H. Huang, X. Zhang, Y. Wei, Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications. Appl. Surf. Sci. 387, 285–293 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Zhang, K. Wang, M. Liu, X. Zhang, L. Tao, Y. Chen, Y. Wei, Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7, 11486–11508 (2015)CrossRefGoogle Scholar
  30. 30.
    Q. Wan, M. Liu, Y. Xie, J. Tian, Q. Huang, F. Deng, L. Mao, Q. Zhang, X. Zhang, Y. Wei, Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J. Mater. Sci. 52, 504–518 (2017)CrossRefGoogle Scholar
  31. 31.
    Q. Huang, M. Liu, J. Chen, Q. Wan, J. Tian, L. Huang, R. Jiang, Y. Wen, X. Zhang, Y. Wei, Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl. Surf. Sci. 419, 35–44 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Zehhaf, A. Benyoucef, R. Berenguer, C. Quijada, S. Taleb, E. Morallon, Lead ion adsorption from aqueous solutions in modified Algerian Montmorillonites. J. Therm. Anal. Calorim. 110, 1069–1077 (2012)CrossRefGoogle Scholar
  33. 33.
    I. Toumi, A. Benyoucef, A. Yahiaoui, C. Quijada, E. Morallon, Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite. J. Alloy. Compd. 551, 212–218 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Zehhaf, A. Benyoucef, C. Quijada, S. Taleb, E. Morallon, Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. Int. J. Environ. Sci. Technol. 12, 595–602 (2015)CrossRefGoogle Scholar
  35. 35.
    I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170–183 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A Novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. 38, 254–260 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Mekhloufi, A. Zehhaf, A. Benyoucef, C. Quijada, E. Morallon, Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. Environ. Monit. Assess. 185, 10365–10375 (2013)CrossRefGoogle Scholar
  38. 38.
    S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982), pp. 3–12Google Scholar
  39. 39.
    P.G. Ingole, R.R. Pawar, M.I. Baig, J.D. Jeon, H.K. Lee, Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acid-activated bentonite (ABn-NH) clay: towards enhancement of water vapor permeance and selectivity. J. Mater. Chem. A 5, 20947–20958 (2017)CrossRefGoogle Scholar
  40. 40.
    B.H. Kim, J.H. Jung, J.W. Kim, H.J. Choi, J. Joo, Nanocomposite intercalated by emulsion polymerization. Synth. Met. 117, 115–118 (2001)CrossRefGoogle Scholar
  41. 41.
    A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies (Freeman & Co., San Francisco, 1994)Google Scholar
  42. 42.
    Y.P. Chang, C.L. Ren, J.C. Qu, X.G. Chen, Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, 504–509 (2012)CrossRefGoogle Scholar
  43. 43.
    J. Wang, L. Bi, Y. Ji, H. Ma, X. Yin, Removal of humic acid from aqueous solution by magnetically separable polyaniline: adsorption behavior and mechanism. J. Colloid Interface Sci. 430, 140–146 (2014)CrossRefGoogle Scholar
  44. 44.
    P.D. Saha, S. Chakraborty, S. Chowdhury, Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpusheterophyllus (jackfruit) leaf powder. Colloids Surf. B 92, 262–270 (2012)CrossRefGoogle Scholar
  45. 45.
    C.M. Yon, J.D. Sherman, Adsorption. In Gas Separation. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 1, (Wiley, New york, 2003)Google Scholar
  46. 46.
    H.J. Kim, S. Im, J.C. Kim, W.G. Hong, K. Shin, H.Y. Jeong, Y.J. Hong, Phytic acid doped polyaniline nanofibers for enhanced aqueous copper(ii) adsorption capability. ACS Sustain. Chem. Eng. 5, 6654–6664 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Jiang, Y. Xu, Y. Dai, W. Luo, L. Dai, Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. J. Hazard. Mater. 215–216, 17–24 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, Development of novel hybrid materials based on poly(2-aminophenyl disulfide)/Silica Gel: preparation, characterization and electrochemical studies. J. Mol. Struct. 1150, 580–585 (2017)CrossRefGoogle Scholar
  49. 49.
    P. Baroni, R.S. Vieira, E. Meneghetti, M.G.C. da Silva, M.M. Beppu, Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J. Hazard. Mater. 152, 1155–1163 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre Universitaire Ahmed Zabana de RelizaneRelizaneAlgeria
  2. 2.Laboratoire de Matériaux Application et EnvironnementUniversite de Mustapha Stambouli MascaraMascaraAlgeria
  3. 3.Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC)Bou IsmaïlAlgeria
  4. 4.Laboratoire de Chimie AppliquéeCentre Universitaire Belhadj Bouchaib Ain TemouchentAïn TémouchentAlgeria

Personalised recommendations