Advertisement

Structural and Optical Properties of CeO2 Nanoparticles Synthesized by Modified Polymer Complex Method

  • Jazmín Calvache-Muñoz
  • Fabiola A. Prado
  • Liliana Tirado
  • Lucy Caterine Daza-Gomez
  • Germán Cuervo-Ochoa
  • Heidy L. Calambas
  • Jorge E. Rodríguez-PáezEmail author
Article
  • 139 Downloads

Abstract

Ceria nanoparticles (Ceria-NPs) were synthesized using a modified polymer complex method and their structural and optical properties were evaluated. The solids were heated at 550 °C and characterized using Raman, UV–Vis absorption, diffuse reflectance, X-ray photoelectron and photoluminescence spectroscopies, X-ray diffraction (XRD) and scanning and transmission electron microscopy. The primary particles obtained presented a size of ~ 10 nm. The XRD indicated that CeO2 was the only crystalline phase. From the UV–Vis and diffuse reflectance spectra, energy values of 3.8 eV and 3.4 eV were obtained, values that can be associated with band—band electronic transitions and/or with those that involve ionized states located within the gap caused by defects and isolated atoms of Ce3+. Photoluminescence spectra reiterated the existence of localized states in the gap. Raman spectra revealed the existence of peroxide (O22−) and superoxide (O2) over the surface of the ceria-NPs. The XPS results indicated that the concentrations of Ce3+ and Ce4+ were ∼ 20.5% and ∼79.5% respectively, and that the stoichiometry of oxygen was 1.9 per atom of Ce. The results obtained from the characterization of CeO2-NPs synthesized make it as promising material for environmental remediation, biomedicine, gas sensing and optoelectronic applications.

Keywords

Ceria-NPs Synthesis Modified polymer complex Structural properties Optical properties 

Notes

Acknowledgements

This project was funded through project ID 4162, a Young Researcher agreement with COLCIENCIAS. We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work, to VRI-Unicauca for all logistical support and to the Surface Science Laboratory of the Industrial University of Santander for their valuable collaboration in the XPS measurements. We are especially grateful to Colin McLachlan for suggestions relating to the English text. To structure the diagram in Fig. 1, icons created by Freepik were used from http://www.flaticon.com.

References

  1. 1.
    S. Gangopadhyay, D.D. Frolov, A.E. Masunov, S. Seal, J. Alloys Compd. 584, 199 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Sun, L. Hong, L. Chen, Energy Environ. Sci. 5, 8475 (2012)CrossRefGoogle Scholar
  3. 3.
    N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 89, 166601 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Science 309, 752 (2005)CrossRefGoogle Scholar
  5. 5.
    N.J. Lawrence, J.R. Brewer, L. Wang, T.S. Wu, J. Wells-Kingsbury, M.M. Ihrig, G. Wang, Y.L. Soo, W.N. Mei, C.L. Cheung, Nano Lett. 11, 2666 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Hull, S.T. Norberg, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, J. Solid State Chem. 182, 2815 (2009)CrossRefGoogle Scholar
  7. 7.
    S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  8. 8.
    N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, B.I. Lundqvist, Phys. Rev. B 64, 115108 (2001)CrossRefGoogle Scholar
  9. 9.
    L. Fangxin, W. Chengyun, S. Qingde, Z. Tianpeng, Z. Guiwen, Appl. Opt. 36, 2796 (1997)CrossRefGoogle Scholar
  10. 10.
    A.S. Nikolic, M. Boskovic, M. Fabian, D.K. Bozanic, M. Vucinic-Vasic, A. Kremenovic, B. Antic, J. Nanosci. Nanotechnol. 13, 6787 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Paier, C. Penschke, J. Sauer, Chem. Rev. 113, 3949 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Trovarelli, P. Fornasiero, Catalysis by Ceria and Related Materials, 2nd edn. (Imperial College Press—Catalytic Science Series, Italy, 2005)Google Scholar
  13. 13.
    Z. Wu, S.H. Overbury, Catalysis by Materials with Well-Defined Structures (Elsevier, Oxford, 2015)Google Scholar
  14. 14.
    G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Science 303, 993 (2004)CrossRefGoogle Scholar
  15. 15.
    K. Otsuka, T. Ushiyama, I. Yamanaka, Chem. Lett. 22, 1517 (1993)CrossRefGoogle Scholar
  16. 16.
    S. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Tsunekawa, R. Sivamohan, T. Ohsuna, H. Takahashi, K. Tohji, Mater. Sci. Forum 315–317, 439 (1999)CrossRefGoogle Scholar
  18. 18.
    A.M. Grumezescu, Nanobiomaterials in Antimicrobial Therapy: Applications of Nanobiomaterials, 6th ed. (William Andrew is an imprint of Elsevier, 2016)Google Scholar
  19. 19.
    S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Nanomedicine 8, 1483 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Jasinski, T. Suzuki, H.U. Anderson, Sensors Actuators B 95, 73 (2003)CrossRefGoogle Scholar
  21. 21.
    I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Nanoscale 3, 1411 (2011)CrossRefGoogle Scholar
  22. 22.
    H.R. Pouretedal, A. Kadkhodaie, Chin. J. Catal. 31, 1328 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)CrossRefGoogle Scholar
  24. 24.
    K.S. Lin, S. Chowdhury, Int. J. Mol. Sci. 11, 3226 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Hirano, M. Inagaki, J. Mater. Chem. 10, 473 (2000)CrossRefGoogle Scholar
  26. 26.
    F. Charbgoo, M. Bin Ahmad, M. Darroudi, Int. J. Nanomed. 12, 1401 (2017)CrossRefGoogle Scholar
  27. 27.
    L. HE, Y. SU, J. Lanhong, S. SHI, J. Rare Earths 33, 791 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Sun, L. Chen, Eur. J. Inorg. Chem. 2009, 3883 (2009)CrossRefGoogle Scholar
  29. 29.
    I.T. Liu, M.H. Hon, L.G. Teoh, J. Electron. Mater. 42, 2536 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87, 133113 (2005)CrossRefGoogle Scholar
  31. 31.
    Y. Xin, X. Yang, P. Jiang, Z. Zhang, Z. Wang, Y. Zhang, ChemCatChem 3, 1772 (2011)CrossRefGoogle Scholar
  32. 32.
    J.J. Ketzial, A.S. Nesaraj, J. Ceram. Process. Res. 12, 74 (2011)Google Scholar
  33. 33.
    F. Heidari, A. Irankhah, Ceram. Int. 40, 12655 (2014)CrossRefGoogle Scholar
  34. 34.
    H.Y. Chang, H.I. Chen, J. Cryst. Growth 283, 457 (2005)CrossRefGoogle Scholar
  35. 35.
    V. Morris, P.G. Fleming, J.D. Holmes, M.A. Morris, Chem. Eng. Sci. 91, 102 (2013)CrossRefGoogle Scholar
  36. 36.
    D. Zhang, F. Niu, H. Li, L. Shi, J. Fang, Powder Technol. 207, 35 (2011)CrossRefGoogle Scholar
  37. 37.
    Q. Yuan, H. Duan, L. Li, L. Sun, Y. Zhang, C. Yan, J. Colloid Interface Sci. 335, 151 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Kakihana, J. Ceram. Soc. Japan 1178, 857 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Calvache-Muñoz, F.A.F.A. Prado, J. E. Rodríguez-Páez, Colloids Surf. A 529, 146 (2017)CrossRefGoogle Scholar
  40. 40.
    K.I. Maslakov, Y.A. Teterin, M.V. Ryzhkov, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, V.G. Petrov, P.K. Petrov, I. Farnan, Phys. Chem. Chem. Phys. 20, 16167 (2018)CrossRefGoogle Scholar
  41. 41.
    L. Truffault, M.-T. Ta, T. Devers, K. Konstantinov, C. Simmonard, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron, J.-P. Blondeau, Mater. Res. Bull. 45, 527 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Pfau, K.D. Schierbaum, Surf. Sci. 321, 71 (1994)CrossRefGoogle Scholar
  43. 43.
    M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, A. Dinia, J. Mater. Chem. C 3, 7014 (2015)CrossRefGoogle Scholar
  44. 44.
    C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514 (2005)CrossRefGoogle Scholar
  45. 45.
    T. Sekiya, T. Yagisawa, N. Kamiya, D. Das Mulmi, S. Kurita, Y. Murakami, T. Kodaira, J. Phys. Soc. Japan 73, 703 (2004)CrossRefGoogle Scholar
  46. 46.
    R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, Cambridge, 1978)Google Scholar
  47. 47.
    P. Kubelka, F. Munk, Zeitschrift Für Tech. Phys. 12, 593 (1931)Google Scholar
  48. 48.
    A. Escobedo Morales, E. Sánchez, Mora, U. Pal, Rev. Mex. Física S 53, 18 (2007)Google Scholar
  49. 49.
    X.H. Lu, X. Huang, S.L. Xie, D.Z. Zheng, Z.Q. Liu, C.L. Liang, Y.X. Tong, Langmuir 26, 7569 (2010)CrossRefGoogle Scholar
  50. 50.
    J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)CrossRefGoogle Scholar
  51. 51.
    Z.V. Popović, M. Grujić-Brojčin, N. Paunović, M.M. Radonjić, V.D. Araújo, M.I.B. Bernardi, M.M. de Lima, A. Cantarero, J. Nanoparticle Res. 17, 23 (2015)CrossRefGoogle Scholar
  52. 52.
    Z. Wu, M. Li, J. Howe, H.M.M. Iii, S.H. Overbury, Langmuir 26, 16595 (2010)CrossRefGoogle Scholar
  53. 53.
    T. Taniguchi, T. Watanabe, N. Sugiyama, A.K. Subramani, H. Wagata, N. Matsushita, M. Yoshimura, J. Phys. Chem. C 113, 19789 (2009)CrossRefGoogle Scholar
  54. 54.
    Y.M. Choi, H. Abernathy, H.T. Chen, M.C. Lin, M. Liu, ChemPhysChem 7, 1957 (2006)CrossRefGoogle Scholar
  55. 55.
    A. Trovarelli, Catal. Rev. 38, 439 (2006)CrossRefGoogle Scholar
  56. 56.
    N. Shehata, K. Meehan, M. Hudait, N. Jain, J. Nanoparticle Res. 14, 1173 (2012)CrossRefGoogle Scholar
  57. 57.
    C. Lu, G. Li, J. Mao, L. Wang, E.Y. Andrei, Nano Lett. 14, 4628 (2014)CrossRefGoogle Scholar
  58. 58.
    H. Yaghoubi, Z. Li, Y. Chen, H.T. Ngo, V.R. Bhethanabotla, B. Joseph, S. Ma, R. Schlaf, A. Takshi, ACS Catal. 5, 327 (2015)CrossRefGoogle Scholar
  59. 59.
    P. Tierney, T.J. Ennis, Á Allen, J. Wright, Thin Solid Films 603, 50 (2016)CrossRefGoogle Scholar
  60. 60.
    O. Stroyuk, A. Raevskaya, N. Gaponik, O. Selyshchev, V. Dzhagan, S. Schulze, D.R.T. Zahn, J. Phys. Chem. C 122, 10267 (2018)CrossRefGoogle Scholar
  61. 61.
    S. Biswas, J. Husek, S. Londo, L.R. Baker, Nano Lett. 18, 1228 (2018)CrossRefGoogle Scholar
  62. 62.
    W. Shockley, W.T. Read, Phys. Rev. 87, 23 (1952)CrossRefGoogle Scholar
  63. 63.
    F. Staub, U. Rau, T. Kirchartz, ACS Omega 3, 8009 (2018)CrossRefGoogle Scholar
  64. 64.
    S.K. Kulkarni, Nanotechnology: Principles and Practices (Springer, Cham, 2015)Google Scholar
  65. 65.
    U.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  66. 66.
    D.A. Andersson, S.I. Simak, B. Johansson, I.A. Abrikosov, N.V. Skorodumova, Phys. Rev. B 75, 035109 (2007)CrossRefGoogle Scholar
  67. 67.
    M.A. Henderson, C.L. Perkins, M.H. Engelhard, S. Thevuthasan, C.H.F. Peden, Surf. Sci. 526, 1 (2003)CrossRefGoogle Scholar
  68. 68.
    S. Tiwari, G. Rathore, N. Patra, A.K. Yadav, D. Bhattacharya, S.N. Jha, C.M. Tseng, S.W. Liu, S. Biring, S. Sen, arXiv:1807.02417v1 (2018)Google Scholar
  69. 69.
    S. Aškrabić, Z.D. Dohčević-Mitrović, V.D. Araújo, G. Ionita, M.M. de Lima, A. Cantarero, J. Phys. D 46, 495306 (2013)CrossRefGoogle Scholar
  70. 70.
    N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, N. Madi, Nanoscale Res. Lett. 9, 231 (2014)CrossRefGoogle Scholar
  71. 71.
    E. Shoko, M.F. Smith, R.H. McKenzie, Phys. Rev. B 79, 134108 (2009)CrossRefGoogle Scholar
  72. 72.
    K.I. Maslakov, Y.A. Teterin, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, V.G. Petrov, P.K. Petrov, I. Farnan, Appl. Surf. Sci. 448, 154 (2018)CrossRefGoogle Scholar
  73. 73.
    P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, J. Chem. Soc. Dalt. Trans. 0, 1686 (1976)CrossRefGoogle Scholar
  74. 74.
    D. Mullins, S. Overbury, D. Huntley, Surf. Sci. 409, 307 (1998)CrossRefGoogle Scholar
  75. 75.
    P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B 68, 1 (2003)CrossRefGoogle Scholar
  76. 76.
    N.K. Renuka, J. Alloys Compd. 513, 230 (2012)CrossRefGoogle Scholar
  77. 77.
    F. Marabelli, P. Wachter, Phys. Rev. B 36, 1238 (1987)CrossRefGoogle Scholar
  78. 78.
    A. Younis, D. Chu, S. Li, J. Phys. D. Appl. Phys. 45, (2012)Google Scholar
  79. 79.
    J. Holgado, G. Munuera, J. Espinós, A. González-Elipe, Appl. Surf. Sci. 158, 164 (2000)CrossRefGoogle Scholar
  80. 80.
    J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, S. Longworth, S.C. Tsang, Chem. Commun. 46, 1887 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jazmín Calvache-Muñoz
    • 1
  • Fabiola A. Prado
    • 1
  • Liliana Tirado
    • 2
  • Lucy Caterine Daza-Gomez
    • 3
  • Germán Cuervo-Ochoa
    • 4
  • Heidy L. Calambas
    • 5
  • Jorge E. Rodríguez-Páez
    • 1
    Email author
  1. 1.CYTEMAC Research Group, Department of PhysicsUniversity of CaucaPopayanColombia
  2. 2.Optoelectronic Group, Interdisciplinary Institute of ScienceUniversity of QuindioArmeniaColombia
  3. 3.Chemical SciencesAutonomous University of MexicoMexico CityUSA
  4. 4.GIPEL Group, Department of ChemistryUniversity of CaucaPopayanColombia
  5. 5.GIDEMP Group, Biotechnology and Nanotechnology LineTecnoparque – SENA ASTINCaliColombia

Personalised recommendations