Advertisement

Assessment of Bamboo Charcoal/Nano-TiO2 (BC/TiO2) Composite Material and Its Application in Photocatalytic Coating

  • Piqi ZhaoEmail author
  • Honghua Liu
  • Xiangyang Guo
  • Han Wang
  • Shoude Wang
  • Lingchao Lu
  • Xin ChengEmail author
Article
  • 64 Downloads

Abstract

The bamboo charcoal/nano-TiO2 (BC/TiO2) composite material is designed and prepared for further improving photocatalytic property of TiO2. Assessment of BC/TiO2 composite material and its application in photocatalytic coating are investigated by nitrogen absorption test, scanning electron microscopy-energy disperse spectroscopy (SEM-EDS) characterization and photocatalytic and mechanical properties analysis. The results show that optimal ratio of TiO2 to BC is 0.03. Rhodamine B (RhB) degradation ratio can reach 62.9% under 4 h UV light irradiation, which is 43.7% higher than pure TiO2 sample. The specific surface area (SBET) and the total average pore size (\(\overline {D}\)) of BC/TiO2 can reach 388.33 m2/g and 3.71 nm, respectively. Moreover, the photocatalytic coatings prepared mainly by BC/TiO2 and polyacrylic emulsion (PAE), not only show satisfactory mechanical properties, but also have excellent photocatalytic property. When the addition of BC/TiO2 composite materials is 6%, the photocatalytic property of coating is optimal, RhB degradation ratio can reach 83.7% under 8 h UV light irradiation. Also the adhesion, pencil hardness and impact resistance reach 2 level, 2H and 44 kg cm, respectively.

Keywords

Nano-TiO2 Photocatalytic Bamboo charcoal Coating 

Notes

Acknowledgements

This Research is supported by the National Natural Science Foundation of China (No. 51602126), the National Key Research and Development Plan of China (No. 2016YFB0303505), the National Natural Science Foundation of China (No. 51672108), State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology) (No. SYSJJ2018-12), China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716), the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).

References

  1. 1.
    E.I. Cedillo-González, V. Barbieri, P. Falcaro, L.M. Torres-Martínez, M. Montecchi, I. Juárez-Ramírez, L. Villanova et al., Build. Environ. 132, 96 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Wang, Z. Leng, H. Yu et al., Wear 382, 1 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Stoyanova, H. Hitkova, A. Bachvarova-Nedelcheva, R. Iordanova, N. Ivanova, M. Sredkova, J. Chem. Technol. Metall. 48, 154 (2013)Google Scholar
  4. 4.
    S. Morelli, R. Pérez, A. Querejeta et al., Ceram. Int. 44, 16199 (2018)CrossRefGoogle Scholar
  5. 5.
    F. Guo, J. Jia, D. Dai et al., Physica E 97, 31 (2018)CrossRefGoogle Scholar
  6. 6.
    O. Akhavan, J. Colloid Interface Sci. 336, 117 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Chen, C. Poon, Build. Environ. 44, 1899 (2009)CrossRefGoogle Scholar
  8. 8.
    C. Raillard, V. Hequet, P.L. Cloirec et al., J. Photochem. Photobiol. Chem. 163, 425 (2004)CrossRefGoogle Scholar
  9. 9.
    J.M. Coronado, M.E. Zorn, I. Tejedor-Tejedor, Appl. Catal. B. Environ. 43, 329 (2003)CrossRefGoogle Scholar
  10. 10.
    F. Xu, T. Wang, H.Y. Chen, J. Bohling et al., Prog. Org. Coat. 113, 15 (2017)CrossRefGoogle Scholar
  11. 11.
    E. Allain, S. Besson, C. Durand et al., Adv. Funct. Mater. 17, 218 (2014)Google Scholar
  12. 12.
    P. Munafo, E. Quagliarini, G.B. Goffredo et al., Constr. Build. Mater. 65, 218 (2014)CrossRefGoogle Scholar
  13. 13.
    E. Jimenez-Relinque, J.R. Rodriguez-Garcia, A. Castillo et al., Cem. Concr. Res. 71, 124 (2004)CrossRefGoogle Scholar
  14. 14.
    Z.U. Lu, G.H. Chen, W.B. Hao, G.X. Sun, Z.J. Li, RSC Adv. 5, 72916 (2017)CrossRefGoogle Scholar
  15. 15.
    P.Q. Zhao, H. Wang, S.D. Wang et al., J. Inorg. Organomet. Polym. 28, 2439, (2018)CrossRefGoogle Scholar
  16. 16.
    A. Stoyanova, H. Hitkova, A. Bachvarova-Nedelcheva et al., J. Chem. Technol. Metall. 48, 154 (2013)Google Scholar
  17. 17.
    K. Vignesh, K.A. Vijayalakshmi, N. Karthikeyan, Mater. Process. Rep. 30, 104 (2016)Google Scholar
  18. 18.
    P. Liao, Z.M. Ismae, W. Zhan et al., Chem. Eng. J. 195, 339 (2004)Google Scholar
  19. 19.
    Y. Fan, B. Wang, S. Yuan, X. Wu et al., Bioresour. Technol. 101, 7661 (2010)CrossRefGoogle Scholar
  20. 20.
    L.L. Zhang, H.J. Li, Q. Song et al., Mater. Technol. 29, 134 (2014)CrossRefGoogle Scholar
  21. 21.
    H.H. Liu, P.Q. Zhao, S.D. Wang et al., J. Inorg. Organomet. Polym. (2018).  https://doi.org/10.1007/s10904-018-1013-6 Google Scholar
  22. 22.
    A.R. Cestari, E.F. Vieira, E.C. Silva, F.J. Alves, J. Colloid. Interf. Sci. 392, 359 (2013)CrossRefGoogle Scholar
  23. 23.
    B.F. Zhu, J. Liu, Y. Chen, Y.W. Liu, Z.N. Yang, Z. Zhang, Surf. Coat. Technol. 331, 40 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Zhang, D. Zhao, J. Wang et al., J. Mater. Sci. 44, 3112 (2009)CrossRefGoogle Scholar
  25. 25.
    E. Minor-Pérez et al., J. Porous. Mat. 13, 13 (2006)CrossRefGoogle Scholar
  26. 26.
    K.L. Murray, N.A. Seaton, M.A. Day, Langmuir 15, 6728 (1999)CrossRefGoogle Scholar
  27. 27.
    X.J. Wang, Z. Wu, Y. Wang et al., J. Hazard. Mater. 262, 13 (2013)Google Scholar
  28. 28.
    X.J. Wang, Y.F. Liu, Z.H. Hu, et al, J. Hazard. Mater. 168, 1062 (2009)Google Scholar
  29. 29.
    P. Zhang, D.S. Hou, Q. Liu, Z.L. Liu, Y. Yu, Cem. Concr. Res. 102, 161 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Nosrati, A. Olad, K. Nofouzi, Appl. Surf. Sci. 346, 543 (2015)CrossRefGoogle Scholar
  31. 31.
    M.R. Mahmoudian, Y. Alias, W.J. Basirun, Appl. Surf. Sci. 268, 302 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinanChina
  2. 2.School of Materials Science and EngineeringUniversity of JinanJinanChina
  3. 3.Shandong Provincial Academy of Building ResearchJinanChina

Personalised recommendations