Advertisement

Structural and Diffuse Reflectance Study of Cr-Doped ZnO Nanorod-Pigments Prepared via Facile Thermal Decomposition Technique

  • F. H. ALkallas
  • K. M. Elshokrofy
  • Sh. A. MansourEmail author
Article
  • 61 Downloads

Abstract

Ceramic coloured nanopigments are promising for commercial cool paint applications. This study was carried out to examine the near infrared (NIR) reflectivity of Cr-doped ZnO nanopigments prepared by simple thermal decomposition of zinc acetate dihydrate and chromium(III) acetate hydroxide as precursors of Zn and Cr, respectively. XRD, FTIR and SEM have been used to characterize the microstructure and morphological properties of the synthesized nanopigments. The obtained results referred to ZnO wurtzite hexagonal structure in absence of other ZnO phases or any phases based on chromium. The obtained particles of the investigated samples are uniform rod-like shape with average diameter about 50 nm. The diffuse reflectance measurements exhibited the decrease in NIR reflectance with increasing Cr content. The sample with lower content of Cr, 0.5 wt% of Cr precursor to Zn precursor, exhibited a maximum value of NIR solar reflectance (R*) of 53.1% with respect to the other doped samples. The optical energy gap (Eg) of the investigated nanopigments were calculated using diffuse reflectance spectrum in view of Kubelka–Munk assumptions and the obtained average value of Eg is 3.219 eV with small standard deviation ± 0.015 eV.

Keywords

ZnO Pigments Thermal decomposition technique Structure and optical properties 

Notes

Acknowledgements

The authors are indebted to the Deanship of Scientific Research at Nourah Bint Abdulrahman University, for funding this study and [the relevant Project Number is (37-s-202)].

References

  1. 1.
    D. Argüeso, J.P. Evans, A.J. Pitman, A. Di Luca, Effects of city expansion on heat stress under climate change conditions. PLoS ONE 10(2), e0117066 (2015)CrossRefGoogle Scholar
  2. 2.
    K.L. Uemoto, N.M.N. Sato, V.M. John, Estimating thermal performance of cool colored paints. Energy Build. 42, 17 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Synnefa, T. Karlessi, N. Gaitani, M. Santamouris, D.N. Assimakopoulos, C. Papakatsikas, Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Build. Environ. 46(1), 38 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Levinson, P. Berdahl, H. Akbari, W. Miller, I. Joedicke, J. Reilly, Y. Suzuki, M. Vondran, Methods of creating solar-reflective nonwhite surfaces and their application to residential roofing materials. Sol. Energy Mater. Sol. Cells 91(4), 304 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Takebayashi, M. Moriyama, Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Build. Environ. 42, 2971 (2007)CrossRefGoogle Scholar
  6. 6.
    X. He, F. Wang, H. Liu, L. Niu, X. Wang, Synthesis and color properties of the TiO2@CoAl2O4 blue pigments with low cobalt content applied in ceramic glaze. J. Am. Ceram. Soc. 101, 2578 (2018)CrossRefGoogle Scholar
  7. 7.
    A.E. Lavat, C.C. Wagner, J.E. Tasca, Interaction of Co–ZnO pigments with ceramic frits: a combined study by XRD, FTIR and UV–visible. Ceram. Int. 34, 2147 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Cain, R. Morrell, Nanostructured ceramics: a review of their potential. Appl. Organomet. Chem. 15, 321 (2001)CrossRefGoogle Scholar
  9. 9.
    R. Levinson, P. Berdahl, H. Akbari, Solar spectral optical properties of pigments—Part II: survey of common colorants. Sol. Energy Mater. Sol.Cells 89, 351 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Baneshi, S. Maruyama, A. Komiya, Comparison between aesthetic and thermal performances of copper oxide and titanium dioxide nano-particulate coatings. J. Quant. Spectrosc. Radiat. Transf. 112(3), 1197 (2011)CrossRefGoogle Scholar
  11. 11.
    P.M.T. Cavalcante, M. Dondi, G. Guarin, M. Raimondo, G. Baldi, Colour performance of ceramic nano-pigments. Dyes Pigment 80, 226 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Lin, Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 113, 334 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Sunaina, S. Sreekanth, S.K. Ghosh, A.K. Mehta, M. Ganguli, Jha, Investigation of the growth mechanism of the formation of ZnO nanorods by thermal decomposition of zinc acetate and their field emission properties. Cryst. Eng. Commun. 19, 2264 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Xu, S. Shi, X. Zhang, Structural and optical properties of (Al,K)-co-doped ZnO thin films deposited by a sol–gel technique. Mater. Sci. Semicond. Process. 16, 732 (2013)CrossRefGoogle Scholar
  15. 15.
    A.N. Mallika, A.R. Reddy, K.V. Reddy, Annealing effects on the structural and optical properties of ZnO nanoparticles with PVA and CA as chelating agents. J. Adv. Ceram. 4(2), 123 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Meng, J. Xing, Z. Li, Q. Li, Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl. Mater. Interfaces 7, 27449 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Li, Y. Liv, M. Zhu, T. Yang, J. Huang, H. Jin, Y. Hu, Structure and magnetic properties of Cr-doped ZnO nanoparticles prepared Under high magnetic field. Solid State Commun. 150, 751 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Iqbal, A. Mahmoo, T.M. Khan, E. Ahmed, Structural and optical properties of Cr doped ZnO crystalline thin films deposited by reactive electron beam evaporation technique. Prog. Nat. Sci. 23(1), 64 (2013)CrossRefGoogle Scholar
  19. 19.
    A.H. Farha, S.A. Mansour, M.F. Kotkata, Structural, optical, and magnetic study of dilute magnetic semiconducting Co-doped ZnO nanocrystals synthesized using polymer-pyrolysis route. J. Mater. Sci. 51, 9855 (2016)CrossRefGoogle Scholar
  20. 20.
    S.A. Ansari, W. Khan, M. Chaman, A.H. Naqvi, Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian J. Chem. 23(12), 5622 (2011)Google Scholar
  21. 21.
    S.M. El-Sheikh, R.M. Mohamed, O.A. Fouad, Synthesis and structure screening of nanostructured chromium oxide powders. J. Alloys Compd. 482, 302 (2009)CrossRefGoogle Scholar
  22. 22.
    S.A. Mansour, A.H. Farha, M.F. Kotkata, Synthesis and study of ZnO nanoparticles by polymer pyrolysis route using two different polymerization initiators. Int. J. Appl. Ceram. Technol. 14, 1213–1221 (2017).CrossRefGoogle Scholar
  23. 23.
    S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route. J. Sol–Gel Sci. Technol. 80, 333 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, A.K. Ghosh, Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Adv. 4, 62123 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochim. Acta Part A 148, 362 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Jose, A. Prakash, S. Laha, S. Natarajan, M.L. Reddy, Green colored nano-pigments derived from Y2BaCuO5: NIR reflective coatings. Dyes Pigm. 107, 118 (2014)CrossRefGoogle Scholar
  27. 27.
    G. Kortum, Reflectance Spectroscopy (Springer, New York, 1969)CrossRefGoogle Scholar
  28. 28.
    R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, Cambridge, 1978)Google Scholar
  29. 29.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mexicana De Fisica S 53 [5], 18 (2007)Google Scholar
  30. 30.
    H. Yamamoto, S. Tanaka, K. Hirao, Effects of substrate temperature on nanostructure and band structure of sputtered Co3O4 thin films. J. Appl. Phys. 93, 4159 (2003)Google Scholar
  31. 31.
    L. Soriano, M. Abbate, A. Fernandez, A.R. Gonzalez-Elipe, J.M. Sanz, The electronic structure of mesoscopic NiO particles. Chem. Phys. Lett. 208, 460 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
  2. 2.Basic Engineering Science Department, Faculty of EngineeringMenoufia UniversityShebin El-KomEgypt
  3. 3.Advanced Materials/Solar Energy and Environmental Sustainability (AMSEES) Laboratory, Faculty of EngineeringMenoufia UniversityShebin El-KomEgypt

Personalised recommendations