Advertisement

Journal of Global Optimization

, Volume 75, Issue 1, pp 131–141 | Cite as

Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem

  • M. Chinaie
  • F. Fakhar
  • M. FakharEmail author
  • H. R. Hajisharifi
Article
  • 102 Downloads

Abstract

In this paper, we characterize the nonemptiness of the set of weak minimal elements for a nonempty subset of a linear space. Moreover, we obtain some existence results for a nonconvex set-valued optimization problem under weaker topological conditions.

Keywords

Algebraic interior Linear space Set-valued optimization Vector closure 

Notes

Acknowledgements

The authors would like to thank the associate editor and reviewers for their constructive comments, which helped us to improve the paper. We also thank Professor Nicolas Hadjisavvas and Professor Constantin Zalinescu who read our manuscript and provided us with valuable comments. The third and fourth authors were partially supported by a Grant from IPM (Nos. 96550414, 98460038).

References

  1. 1.
    Adán, M., Novo, V.: Weak efficiency in vector optimization using a closure of algebraic type under some cone-convexlikeness. Eur. J. Oper. Res. 149, 641–653 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adán, M., Novo, V.: Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 121, 515–540 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, G., Huang, X., Yang, X.: Vector Optimization. Springer, Berlin (2005)Google Scholar
  4. 4.
    Conway, J.: A Course in Functional Analysis. Springer, New York (1985)CrossRefGoogle Scholar
  5. 5.
    Dhingra, M., Lalitha, C.S.: Approximate solutions and scalarization in set-valued optimization. Optimization 66, 1793–1805 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gerstewitz, Ch., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau. 31, 61–81 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gutiérrez, C., Jiménez, B., Miglierina, E., Molho, E.: Scalarization in set optimization with solid and nonsolid ordering cones. J. Glob. Optim. 61, 525–552 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822–1833 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gutiérrez, C., Novo, V., Ródenas-Pedregosa, J.L., Tanaka, T.: Nonconvex separation functional in linear spaces with applications to vector equilibria. SIAM J. Optim. 26, 2677–2695 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gutiérrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, J.L.: Ekeland variational principles in vector equilibrium problems. SIAM J. Optim. 27, 2405–2425 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Göpfert, A., Riahi, H., Tammer, Ch., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
  12. 12.
    Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, New York-Heidelberg (1975)CrossRefGoogle Scholar
  14. 14.
    Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2011)CrossRefGoogle Scholar
  15. 15.
    Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization: An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Kuroiwa, D.: The natural criteria in set-valued optimization. Surikaisekikenkyusho Kokyuroku 1031, 85–90 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)CrossRefGoogle Scholar
  18. 18.
    Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Qiu, J.H., He, F.: A general vectorial Ekeland’s variational principle with a \(p\)-distance. Acta Math. Sin. 29, 1655–1678 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefGoogle Scholar
  21. 21.
    Weidner, P.: Gerstewitz functionals on linear spaces and functionals with uniform sublevel sets. J. Optim. Theory Appl. 173, 812–827 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, W.Y., Li, S.J., Teo, K.L.: Well-posedness for set optimization problems. Nonlinear Anal. 71, 3769–3778 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Chinaie
    • 1
  • F. Fakhar
    • 1
  • M. Fakhar
    • 1
    • 3
    Email author
  • H. R. Hajisharifi
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of IsfahanIsfahanIran
  2. 2.Department of MathematicsUniversity of KhansarKhansarIran
  3. 3.School of MathematicsInstitute for Research in Fundamental SciencesTehranIran

Personalised recommendations