Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem
Article
First Online:
- 102 Downloads
Abstract
In this paper, we characterize the nonemptiness of the set of weak minimal elements for a nonempty subset of a linear space. Moreover, we obtain some existence results for a nonconvex set-valued optimization problem under weaker topological conditions.
Keywords
Algebraic interior Linear space Set-valued optimization Vector closureNotes
Acknowledgements
The authors would like to thank the associate editor and reviewers for their constructive comments, which helped us to improve the paper. We also thank Professor Nicolas Hadjisavvas and Professor Constantin Zalinescu who read our manuscript and provided us with valuable comments. The third and fourth authors were partially supported by a Grant from IPM (Nos. 96550414, 98460038).
References
- 1.Adán, M., Novo, V.: Weak efficiency in vector optimization using a closure of algebraic type under some cone-convexlikeness. Eur. J. Oper. Res. 149, 641–653 (2003)MathSciNetCrossRefGoogle Scholar
- 2.Adán, M., Novo, V.: Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 121, 515–540 (2004)MathSciNetCrossRefGoogle Scholar
- 3.Chen, G., Huang, X., Yang, X.: Vector Optimization. Springer, Berlin (2005)Google Scholar
- 4.Conway, J.: A Course in Functional Analysis. Springer, New York (1985)CrossRefGoogle Scholar
- 5.Dhingra, M., Lalitha, C.S.: Approximate solutions and scalarization in set-valued optimization. Optimization 66, 1793–1805 (2017)MathSciNetCrossRefGoogle Scholar
- 6.Gerstewitz, Ch., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau. 31, 61–81 (1985)MathSciNetzbMATHGoogle Scholar
- 7.Gutiérrez, C., Jiménez, B., Miglierina, E., Molho, E.: Scalarization in set optimization with solid and nonsolid ordering cones. J. Glob. Optim. 61, 525–552 (2015)MathSciNetCrossRefGoogle Scholar
- 8.Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822–1833 (2012)MathSciNetCrossRefGoogle Scholar
- 9.Gutiérrez, C., Novo, V., Ródenas-Pedregosa, J.L., Tanaka, T.: Nonconvex separation functional in linear spaces with applications to vector equilibria. SIAM J. Optim. 26, 2677–2695 (2016)MathSciNetCrossRefGoogle Scholar
- 10.Gutiérrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, J.L.: Ekeland variational principles in vector equilibrium problems. SIAM J. Optim. 27, 2405–2425 (2017)MathSciNetCrossRefGoogle Scholar
- 11.Göpfert, A., Riahi, H., Tammer, Ch., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
- 12.Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)MathSciNetCrossRefGoogle Scholar
- 13.Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, New York-Heidelberg (1975)CrossRefGoogle Scholar
- 14.Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Berlin (2011)CrossRefGoogle Scholar
- 15.Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization: An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)CrossRefGoogle Scholar
- 16.Kuroiwa, D.: The natural criteria in set-valued optimization. Surikaisekikenkyusho Kokyuroku 1031, 85–90 (1998)MathSciNetzbMATHGoogle Scholar
- 17.Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)CrossRefGoogle Scholar
- 18.Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)MathSciNetCrossRefGoogle Scholar
- 19.Qiu, J.H., He, F.: A general vectorial Ekeland’s variational principle with a \(p\)-distance. Acta Math. Sin. 29, 1655–1678 (2013)MathSciNetCrossRefGoogle Scholar
- 20.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefGoogle Scholar
- 21.Weidner, P.: Gerstewitz functionals on linear spaces and functionals with uniform sublevel sets. J. Optim. Theory Appl. 173, 812–827 (2017)MathSciNetCrossRefGoogle Scholar
- 22.Zhang, W.Y., Li, S.J., Teo, K.L.: Well-posedness for set optimization problems. Nonlinear Anal. 71, 3769–3778 (2009)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019