An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge

  • Jianlin Jiang
  • Su ZhangEmail author
  • Yibing Lv
  • Xin Du
  • Ziwei Yan
S.I.: MOA 2018


Multi-source Weber problem (MSWP) is a classical nonconvex and NP-hard model in facility location. A well-known method for solving MSWP is the location–allocation algorithm which consists of a location phase to locate new facilities and an allocation phase to allocate customers at each iteration. This paper considers the more general and practical case of MSWP called the constrained multi-source Weber problem (CMSWP), i.e., locating multiple facilities with the consideration of the gauge for measuring distances and locational constraints on new facilities. According to the favorable structure of the involved location subproblems after reformulation, an alternating direction method of multipliers (ADMM) type method is contributed to solving these subproblems under different distance measures in a uniform framework. Then a new ADMM-based location–allocation algorithm is presented for CMSWP and its local convergence is theoretically proved. Some preliminary numerical results are reported to verify the effectiveness of proposed methods.


Multi-source Weber problem Nonconvex Location–allocation ADMM Gauge 



  1. 1.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)zbMATHGoogle Scholar
  2. 2.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brimberg, J., Hansen, P., Mladenovic, N., Taillard, E.D.: Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper. Res. 48(3), 444–460 (2000)CrossRefGoogle Scholar
  4. 4.
    Brimberg, J., Love, R.F.: Global convergence of a generalized iterate procedure for the minisum location problem with \(l_p\) distances. Oper. Res. 41(6), 1153–1163 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carrizosa, E., Conde, E., Oz, M.M., Puerto, J.: Simpson points in planar problems with locational constraints—the polyhedral gauge case. Math. Oper. Res. 22, 297–300 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chandrasekaran, R., Tamir, A.: Open questions concerning Weiszfeld’s algorithm for the Fermat–Weber location problem. Math. Program. 44, 293–295 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, C.H., He, B.S., Ye, Y.Y., Yuan, X.M.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155, 57–79 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cooper, L.: Heuristic methods for location–allocation problems. SIAM Rev. 6, 37–53 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cooper, L.: Solutions of generalized location equilibrium models. J. Reg. Sci. 7, 1–18 (1967)CrossRefGoogle Scholar
  12. 12.
    Dai, Y.H., Han, D.R., Yuan, X.M., Zhang, W.X.: A sequential updating scheme of the Lagrange multiplier for separable convex programming. Math. Comput. 86, 315–343 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in \(2\) and \(3\) space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, New York (1995)CrossRefGoogle Scholar
  16. 16.
    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)zbMATHGoogle Scholar
  18. 18.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)CrossRefzbMATHGoogle Scholar
  19. 19.
    Glowinski, R., Marrocco, A.: Approximation par \(\acute{e}\)l\(\acute{e}\)ments finis d’ordre un et r\(\acute{e}\)solution par p\(\acute{e}\)nalisation-dualit\(\acute{e}\) d’une classe de probl\(\grave{e}\)mes non lin\(\acute{e}\)aires. RAIRO R2, 41–76 (1975)Google Scholar
  20. 20.
    Guo, K., Han, D.R., Yuan, X.M.: Convergence analysis of Douglas–Rachford splitting method for “strongly + weakly” convex programming. SIAM J. Numer. Anal. 55, 1549–1577 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3–5), 151–161 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    He, B.S., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Iyigun, C., Israel, A.: A generalized Weiszfeld method for the multi-facility location problem. Oper. Res. Lett. 38, 207–214 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jiang, J.L., Yuan, X.M.: A heuristic algorithm for constrained multi-source Weber problem—the variational inequality approach. Eur. J. Oper. Res. 187, 357–370 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Katz, I.N., Vogl, S.R.: A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem. Comput. Math. Appl. 59, 399–410 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Levin, Y., Ben-Israel, A.: A heuristic method for large-scale multi-facility location problems. Comput. Oper. Res. 31, 257–272 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Liu, Y.F., Liu, X., Ma, S.Q.: On the nonergodic convergence rate of an inexact augmented Lagrangian framework for composite convex programming. Math. Oper. Res. 44(2), 632–650 (2019)CrossRefGoogle Scholar
  32. 32.
    Love, R.F., Morris, J.G.: Mathematical models of road travel distances. Manag. Sci. 25, 130–139 (1979)CrossRefzbMATHGoogle Scholar
  33. 33.
    Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182–196 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Michelot, C., Lefebvre, O.: A primal–dual algorithm for the Fermat–Weber problem involving mixed gausess. Math. Program. 39, 319–335 (1987)CrossRefzbMATHGoogle Scholar
  35. 35.
    Minkowski, H.: Theorie der konvexen Körper, Gesammelte Abhandlungen. Teubner, Berlin (1911)Google Scholar
  36. 36.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Spriger, Berlin (2006)zbMATHGoogle Scholar
  37. 37.
    Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26, 597–609 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Peng, Y.G., Ganesh, A., Wright, J., Xu, W.L., Ma, Y.: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)CrossRefGoogle Scholar
  39. 39.
    Plastria, F.: Asymmetric distances, semidirected networks and majority in Fermat–Weber problems. Ann. Oper. Res. 167, 121–155 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Powell, M.J.D.: A method for nonlinear constrained total-variation problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)Google Scholar
  41. 41.
    Sun, D.F., Toh, K.C., Yang, L.Q.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25, 882–915 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat–Weber location problem. Math. Program. 90, 559–566 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ward, J.E., Wendell, R.E.: Using block norms for location modelling. Oper. Res. 33, 1074–1090 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937)zbMATHGoogle Scholar
  46. 46.
    Witzgall, C.: Optimal location of a central facility, mathematical models and concepts. Report 8388, National Bureau of Standards, Washington DC, USA (1964)Google Scholar
  47. 47.
    Yao, Z.S., Lee, L.H., Jaruphongsa, W., Tan, V., Hui, C.F.: Multi-source facility location–allocation and inventory problem. Eur. J. Oper. Res. 207, 750–762 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yang, J.F., Sun, D.F., Toh, K.C.: A proximal point algorithm for log-determinant optimization with group lasso regularization. SIAM J. Optim. 23, 857–893 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of Information and MathematicsYangtze UniversityJingzhouChina
  3. 3.Business SchoolNankai UniversityTianjinChina
  4. 4.School of Mechanical Engineering and Automation and Shanghai Key Laboratory of Power Station Automation TechnologyShanghai UniversityShanghaiChina

Personalised recommendations