Advertisement

Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods

  • Masaki Kimizuka
  • Sunyoung KimEmail author
  • Makoto Yamashita
Article
  • 25 Downloads

Abstract

The pooling problem is an important industrial problem in the class of network flow problems for allocating gas flow in pipeline transportation networks. For the pooling problem with time discretization, we propose second order cone programming (SOCP) and linear programming (LP) relaxations and prove that they obtain the same optimal value as the semidefinite programming relaxation. Moreover, a rescheduling method is proposed to efficiently refine the solution obtained by the SOCP or LP relaxation. The efficiency of the SOCP and the LP relaxation and the proposed rescheduling method is illustrated with numerical results on the test instances from the work of Nishi in 2010, some large instances and Foulds 3, 4 and 5 test problems.

Keywords

Pooling problem Semidefinite relaxation Second order cone relaxation Linear programming relaxation Rescheduling method Computational efficiency 

Mathematics Subject Classification

90C20 90C22 90C25 90C26 

Notes

References

  1. 1.
    Ahmadi, A.A., Dashb, S., Hal, G.: Optimization over structured subsets of positive semidefinite matrices via column generation. Discrete Optim. 24, 129–151 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahmadi, A.A. Majumbar, A.: DSOS and SDSOS optimization: Lp and socp-based alternatives to sum of squares optimization. In: Proceedings of the 48th Annual Conference on Information Sciences and Systems, pp. 1–5 (2014)Google Scholar
  3. 3.
    Ahmadi, A.A., Majumdar, A.: Spotless: software for DSOS and SDSOS optimization (2014). https://github.com/spot-toolbox/spotless
  4. 4.
    Alfaki, M.: Models and Solution Methods for the Pooling Problem. Ph.D. thesis, University of Bergen, Department of Informatics, University of Bergen (2012)Google Scholar
  5. 5.
    Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56, 897–916 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barker, G.P., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57(1), 15–32 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Drud, A.: CONOPT—A large scale GRG code. ORSA J. Comput. 6, 207–216 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)CrossRefGoogle Scholar
  10. 10.
    Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim. 67(3), 631–669 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)CrossRefGoogle Scholar
  12. 12.
    IBM. IBM ILOG CPLEX user’s manual. Tech. Rep. (2015)Google Scholar
  13. 13.
    Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15(3–4), 201–224 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143–154 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)CrossRefGoogle Scholar
  16. 16.
    Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Marandi, A., Dahlc, J., de Klerk, E.: A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem. Ann. Oper. Res. 265(1), 67–92 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marandi, A., de Klerk, E., Dahlc, J.: Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy. Discrete Appl. Math. (to appear) (2018)Google Scholar
  19. 19.
    MOSEK ApS. Moset optimization toolbox for MATLAB (2019). https://docs.mosek.com/9.0/toolbox.pdf
  20. 20.
    Nishi, T.: A semidefinite programming relaxation approach for the pooling problem a semidefinite programming relaxation approach for the pooling problem. Master’s thesis, Kyoto University, Department of Applied Mathematics and Physics, Kyoto University (2010)Google Scholar
  21. 21.
    Ralph, D.: Nonlinear programming advances in mathematical programming with complementarity constraints. R. Soc. (2007)Google Scholar
  22. 22.
    Ralph, D., Wright, S.J.: Some properties of regularization and penalization schemes for mpecs. Optim. Methods Softw. 19(5), 527–556 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sturm, J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11&12, 625–653 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Waki, H., Kim, S., Kojima, M., Muramatsu, M., Sugimoto, H.: Algorithm 883: SparsePOP: a sparse semidefinite programming relaxation of polynomial optimization problems. ACM Trans. Math. Softw. 35(2), 15 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata, M.: Latest developments in the SDPA family for solving large-scale SDPs. In: Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 687–713. Springer, New York (2012)Google Scholar
  28. 28.
    Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zanni, E.: Can Semidefinite Programming be a Key Approach to the Pooling Problem?. University of Edinburgh, Edinburgh (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Masaki Kimizuka
    • 1
  • Sunyoung Kim
    • 2
    Email author
  • Makoto Yamashita
    • 1
  1. 1.Department of Mathematical and Computing ScienceTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Department of MathematicsEwha W. UniversitySudaemoon-guKorea

Personalised recommendations