Advertisement

A Euclidean distance matrix model for protein molecular conformation

  • Fengzhen Zhai
  • Qingna LiEmail author
Article
  • 19 Downloads

Abstract

Protein molecular conformation is an important and challenging problem in biophysics. It is to recover the structure of proteins based on limited information such as noised distances, lower and upper bounds on some distances between atoms. In this paper, based on the recent progress in numerical algorithms for Euclidean distance matrix (EDM) optimization problems, we propose a EDM model for protein molecular conformation. We reformulate the problem as a rank-constrained least squares problem with linear equality constraints, box constraints, as well as a cone constraint. Due to the nonconvexity of the problem, we develop a majorized penalty approach to solve the problem. We apply the accelerated block coordinate descent algorithm proposed in Sun et al. (SIAM J Optim 26(2):1072–1100, 2016) to solve the resulting subproblem. Extensive numerical results demonstrate the efficiency of the proposed model.

Keywords

Protein molecular conformation Euclidean distance matrix Accelerated block coordinate descent method Majorized penalty approach 

Notes

References

  1. 1.
    Alfakih, A.Y., Wolkowicz, H.: Euclidean Distance Matrices and the Molecular Conformation Problem. Faculty of Mathematics, University of Waterloo, Waterloo (2002)zbMATHGoogle Scholar
  2. 2.
    Biswas, P., Toh, K.C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30(3), 1251–1277 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biswas, P., Liang, T.C., Toh, K.C., Ye, Y., Wang, T.C.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3(4), 360–371 (2006)CrossRefGoogle Scholar
  4. 4.
    Biswas, P., Ye, Y.: A distributed method for solving semidefinite programs arising from ad hoc wireless sensor network localization. In: Hager, W.W., Pardalos, P.M., Huang, S.-J. (eds.) Multiscale Optimization Methods and Applications, pp. 69–84. Springer, Boston (2006)CrossRefGoogle Scholar
  5. 5.
    Cao, M.Z., Li, Q.N.: An ordinal weighted EDM model for nonmetric multidimensional scaling: an application to image ranking. Technical report, Beijing Institute of Technology (2018)Google Scholar
  6. 6.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and hall/CRC, Boca Raton (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ding, C., Qi, H.D.: Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation. Comput. Optim. Appl. 66(1), 187–218 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding, C., Qi, H.D.: Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction. Math. Program. 164(1–2), 341–381 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Meboo publish Google Scholar, Palo Alto (2005)zbMATHGoogle Scholar
  10. 10.
    Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6), 12–30 (2015)CrossRefGoogle Scholar
  11. 11.
    Dai, Y.J., Yao, Z.Q., Li, Q.N., Xie, D.: Innovative posture sensing method for large engineering manipulators based on nearest Euclidean distance matrix. Technical report, Xiangtan University (2018)Google Scholar
  12. 12.
    Fang, X.Y., Toh, K.C.: Using a Distributed SDP Approach to Solve Simulated Protein Molecular Conformation Problems. Distance Geometry, pp. 351–376. Springer, New York (2013)zbMATHGoogle Scholar
  13. 13.
    Gansner, E.R., Hu, Y., North, S.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Gr. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  14. 14.
    Gao, Y.: Structured low rank matrix optimization problems: a penalized approach. PhD thesis, National University of Singapore, August (2010)Google Scholar
  15. 15.
    Jiang, K.F., Sun, D.F., Toh, K.C.: A partial proximal point algorithm for nuclear norm regularized matrix least squares problems. Math. Program. Comput. 6, 281–325 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Huang, H.X., Liang, Z.A., Pardalos, P.M.: Some properties for the Euclidean distance matrix and positive semidefinite matrix completion problems. J. Glob. Optim. 25(1), 3–21 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoai An, L.T.: Solving large scale molecular distance geometry problems by a smoothing technique via the Gaussian transform and D.C. programming. J. Glob. Optim. 27(4), 375–397 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kelder, D.D., Gabriëlle, M.: Distance geometry and molecular conformation. Trends Pharmacol. Sci. 10(4), 164 (1988)CrossRefGoogle Scholar
  19. 19.
    Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebras 25(4), 925–942 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, Q.N., Li, D.H.: A projected semismooth Newton method for problems of calibrating least squares covariance matrix. Oper. Res. Lett. 39(2), 103–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, Q.N., Qi, H.D.: An inexact smoothing Newton method for Euclidean distance matrix optimization under ordinal constraints. J. Comput. Math. 35(4), 467–483 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Leung, N.H.Z., Toh, K.C.: An SDP-based divide-and-conquer algorithm for large-scale noisy anchor-free graph realization. SIAM J. Sci. Comput. 31(6), 4351–4372 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. Siam Rev. 56(1), 3–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, X.D., Sun, D.F., Toh, K.C.: QSDPNAL: a two-phase proximal augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 1–41 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, X.D., Sun, D.F., Toh, K.C.: A block symmetric Gauss–Seidel decomposition theo for convex composite quadratic programming and its applications. Math. Program. 16, 1–24 (2017)Google Scholar
  27. 27.
    Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15(3), 219–234 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Qi, H.D.: A semismooth Newton method for the nearest Euclidean distance matrix problem. SIAM J. Matrix Anal. Appl. 34(1), 67–93 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Qi, H.D., Xiu, N.H., Yuan, X.M.: A lagrangian dual approach to the single-source localization problem. IEEE Trans. Signal Process. 61(15), 3815–3826 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qi, H.D., Yuan, X.M.: Computing the nearest Euclidean distance matrix with low embedding dimensions. Math. program. 147(1–2), 351–389 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schoenberg, I.J.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sun, D.F., Toh, K.C., Yang, L.Q.: An efficient inexact ABCD method for least squares semidefinite programming. SIAM J. Optim. 26(2), 1072–1100 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Toh, K.C.: An inexact primal–dual path-following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Toh, K.C.: User guide for QSDP-0—a Matlab software package for convex quadratic semidefinite programming. Technical report, Department of Mathematics, National University of Singapore, Singapore (2010)Google Scholar
  35. 35.
    Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95(2), 189–217 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wegner, M., Taubert, O., Schug, A., Meyerhenke, H.: Maxent-stress optimization of 3D biomolecular models. arXiv preprint arXiv:1706.06805 (2017)
  37. 37.
    Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yu, P.P., Li, Q.N.: Ordinal distance metric learning with MDS for image ranking. Asia Pac. J. Oper. Res. 35(1), 1850007 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zou, Z., Bird, R.H., Schnabel, R.B.: A stochastic/perturbation global optimization algorithm for distance geometry problems. J. Glob. Optim. 11(1), 91–105 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingChina
  2. 2.School of Mathematics and Statistics/Beijing Key Laboratory on MCAACIBeijing Institute of TechnologyBeijingChina

Personalised recommendations