Advertisement

Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems

  • Washington Alves de OliveiraEmail author
  • Marko Antonio Rojas-Medar
  • Antonio Beato-Moreno
  • Maria Beatriz Hernández-Jiménez
Article
  • 60 Downloads

Abstract

If \(x^*\) is a local minimum solution, then there exists a ball of radius \(r>0\) such that \(f(x)\ge f(x^*)\) for all \(x\in B(x^*,r)\). The purpose of the current study is to identify the suitable \(B(x^*,r)\) of the local optimal solution \(x^*\) for a particular multiobjective optimization problem. We provide a way to calculate the largest radius of the ball centered at local Pareto solution in which this solution is optimal. In this process, we present the necessary and sufficient conditions for achieving a global Pareto optimal solution. The results of this investigation might be useful to determine stopping criteria in the algorithms development.

Keywords

Pareto optimality conditions Multiobjective optimization Quadratic fractional optimization problems 

Notes

Acknowledgements

The authors are indebted to the anonymous reviewers for their helpful comments. This work was supported by the Coordination for the Improvement of Higher Level Personnel of Brazil (CAPES), the Fund to Support Teaching, Research and Extension of Unicamp (FAEPEX) (Grant No. 534/09), the Diretoria Executiva de Relações Internacionais (DERI)—Edital 62—Cátedras Ibero-Americanas (Grant No. 62/17), and the MINECO/ FEDER(UE) (Grant No. MTM2015-66185-P).

References

  1. 1.
    Ammar, E.E.: On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem. Inf. Sci. 178(2), 468–484 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammar, E.E.: On fuzzy random multiobjective quadratic programming. Eur. J. Oper. Res. 193(2), 329–341 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arévalo, M.T., Zapata, A.: Selección de carteras mediante programación fraccionada multiobjetivo. XXIII Congreso Nacional de Estadística e Investigación Operativa, Valencia, España (1997)Google Scholar
  4. 4.
    Beato-Moreno, A., Infante-Macías, R., Ruiz-Canales, P.: Decisión multicriterio a través de problemas de optimización cuadrático-fraccionales. Rev. R. Acad. Cienc. Exact. Fis. Nat., España 93(04), 499–505 (1999)zbMATHGoogle Scholar
  5. 5.
    Beato-Moreno, A., Ruiz-Canales, P., Luque-Calvo, P.L., Blanquero-Bravo, R.: Multiobjective quadratic problem: characterization of the efficient points. In: Crouzeix, J., Martinez-Legaz, J., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 425–438. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  6. 6.
    Bector, C.R., Chandra, S., Singh, C.: A linearization approach to multiobjective programming duality. J. Math. Anal. Appl. 175, 268–279 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benson, H.P.: Fractional programming with convex quadratic forms and functions. Eur. J. Oper. Res. 173, 351–369 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North Holland Series in System Science and Engineering, vol. 8. North Holland, New York (1983)zbMATHGoogle Scholar
  9. 9.
    Craven, B.D.: Fractional Programming. Sigma Series in Applied Mathematics, vol. 4, p. 145. Heldermann Verlag, Berlin (1988). ISBN: 3-88538-404-3Google Scholar
  10. 10.
    Emam, O.E.: A parametric study on multi-objective integer quadratic programming problems under uncertainty. Gen. Math. Notes 6(1), 49–60 (2011)Google Scholar
  11. 11.
    Jagannathan, R.: Duality for nonlinear fractional programs. Z. Oper. Res. 17, 1–3 (1973)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jiao, H., Liu, S.: Range division and compression algorithm for quadratically constrained sum of quadratic ratios. Comput. Appl. Math. 36(1), 225–247 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Konno, H., Inori, M.: Bond portfolio optimization by bilinear fractional programming. J. Oper. Res. Soc. Jpn. 32(02), 143–158 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Korhonen, P., Yu, G.Y.: A reference direction approach to multiple objective quadratic-linear programming. Eur. J. Oper. Res. 102(3), 601–610 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Korhonen, P., Yu, G.Y.: On computing objective function values in multiple objective quadratic-linear programming. Eur. J. Oper. Res. 106(1), 184–190 (1998)CrossRefGoogle Scholar
  16. 16.
    Kornbluth, J.S.H., Steuer, R.E.: Multiple objective linear fractional programming. Manag. Sci. 27(9), 1024–1039 (1981)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lachhwani, K.: Fuzzy goal programming approach to multi objective quadratic programming problem. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 82(4), 317–322 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lachhwani, K.: On FGP approach to multiobjective quadratic fractional programming problem. Int. J. Appl. Comput. Math. 3(4), 3443–3453 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liang, Z.A., Huang, H.X., Pardalos, P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110, 611–619 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liang, Z.A., Huang, H.X., Pardalos, P.M.: Efficiency conditions and duality for a class of multiobjective fractional programming problems. J. Global Optim. 27, 447–471 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston (1999)Google Scholar
  22. 22.
    Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W. (eds.) Generalized Concavity Optimization and Economics, pp. 263–280. Academic Press, New York (1981)Google Scholar
  23. 23.
    Oliveira, W.A., Beato-Moreno, A., Moretti, A.C., Salles Neto, L.L.: Pareto optimality conditions and duality for vector quadratic fractional optimization problems. J. Appl. Math. 214, 1–13 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Osuna-Gómez, R., Rufián-Lizana, A., Ruiz-Canales, P.: Multiobjective fractional programming with generalized convexity. Soc. Estad. Invest. Oper. TOP 8(1), 97–110 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Rhode, R., Weber, R.: Multiple objective quadratic-linear programming. In: Brans, J.P. (ed.) Operational Research. IFOR, pp. 405–420. North-Holland Publishing Company, Amsterdam (1981)Google Scholar
  26. 26.
    Santos, L.B., Osuna-Gómez, R., Rojas-Medar, M.A.: Nonsmooth multiobjective fractional programming with generalized convexity. Rev. Integr. Esc. Mat. Univ. Ind. Santander 26(1), 1–12 (2008)MathSciNetGoogle Scholar
  27. 27.
    Schaible, S., Shi, J.: Recent developments in fractional programming: single-ratio and max–min case. In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, pp. 493–506 (2003)Google Scholar
  28. 28.
    Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods and Applications, vol. 409. Kluwer Academic Publishers, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  29. 29.
    Stancu-Minasian, I.M.: A seventh bibliography of fractional programming. AMO Adv. Model. Optim. Electron. Int. J. 15(2), 309–386 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Stancu-Minasian, I.M.: A eighth bibliography of fractional programming. Optimization 66(3), 439–470 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Stancu-Minasian, I.M., Stancu, A.M.: Duality for multiple objective fractional programming with generalized type-I univexity. In: Optimization Theory, Decision Making, and Operations Research Applications: Proceedings of the 1st International Symposium and 10th Balkan Conference on Operational Research, vol. 31, pp. 199–209. Springer (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Applied SciencesUniversity of CampinasLimeiraBrazil
  2. 2.Instituto de Alta InvestigaciónUniversidad de TarapacáAricaChile
  3. 3.Department of Statistics and Operations Research, College of MathematicsUniversity of SevillaSevillaSpain
  4. 4.Department of Economics, Quantitative Methods and H. EconomicUniversidad Pablo de OlavideSevillaSpain

Personalised recommendations