Advertisement

Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints

  • Hatim Djelassi
  • Moll Glass
  • Alexander MitsosEmail author
Article
  • 15 Downloads

Abstract

Discretization-based algorithms are proposed for the global solution of mixed-integer nonlinear generalized semi-infinite (GSIP) and bilevel (BLP) programs with lower-level equality constraints coupling the lower and upper level. The algorithms are extensions, respectively, of the algorithm proposed by Mitsos and Tsoukalas (J Glob Optim 61(1):1–17, 2015.  https://doi.org/10.1007/s10898-014-0146-6) and by Mitsos (J Glob Optim 47(4):557–582, 2010.  https://doi.org/10.1007/s10898-009-9479-y). As their predecessors, the algorithms are based on bounding procedures, which achieve convergence through a successive discretization of the lower-level variable space. In order to cope with convergence issues introduced by coupling equality constraints, a subset of the lower-level variables is treated as dependent variables fixed by the equality constraints while the remaining lower-level variables are discretized. Proofs of finite termination with \(\varepsilon \)-optimality are provided under appropriate assumptions, the preeminent of which are the existence, uniqueness, and continuity of the solution to the equality constraints. The performance of the proposed algorithms is assessed based on numerical experiments.

Keywords

GSIP Bilevel Equality constraints MINLP Nonconvex Global optimization 

Notes

Acknowledgements

We gratefully acknowledge the financial support provided by Réseau de transport d’électricité (RTE, France) through the project “Bilevel Optimization for Worst-case Analysis of Power Grids” and by the Excellence Initiative of the German federal state governments through the Cluster of Excellence “Tailor Made Fuels from Biomass” (EXC 236). Moll Glass is grateful for her scholarship from the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes).

Supplementary material

References

  1. 1.
    Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser, Basel (1982).  https://doi.org/10.1007/978-3-0348-6328-5 zbMATHGoogle Scholar
  2. 2.
    Bard, J.F.: Practical Bilevel Optimization. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4757-2836-1 zbMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. 92(3), 453–480 (2002).  https://doi.org/10.1007/s101070100286 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bhattacharjee, B., Schwer, D.A., Barton, P.I., Green, W.H.: Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combust. Flame 135(3), 191–208 (2003).  https://doi.org/10.1016/s0010-2180(03)00159-7 Google Scholar
  5. 5.
    Bhattacharjee, B., Green, W.H., Barton, P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30(1), 63–93 (2005a).  https://doi.org/10.1007/s10589-005-4556-8 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bhattacharjee, B., Lemonidis, P., Green, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103(2), 283–307 (2005b).  https://doi.org/10.1007/s10107-005-0583-6 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19(2), 261–281 (1976).  https://doi.org/10.1007/bf00934096 MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973).  https://doi.org/10.1287/opre.21.1.37 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dempe, S.: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications. Springer, Boston (2002).  https://doi.org/10.1007/b101970 zbMATHGoogle Scholar
  10. 10.
    Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003).  https://doi.org/10.1080/0233193031000149894 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Djelassi, H., Mitsos, A.: A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. J. Glob. Optim. 68(2), 227–253 (2017).  https://doi.org/10.1007/s10898-016-0476-7 MathSciNetzbMATHGoogle Scholar
  12. 12.
    Edmunds, T.A., Bard, J.F.: An algorithm for the mixed-integer nonlinear bilevel programming problem. Ann. Oper. Res. 34(1), 149–162 (1992).  https://doi.org/10.1007/bf02098177 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization. Math. Program. (2017).  https://doi.org/10.1007/s10107-017-1189-5 zbMATHGoogle Scholar
  14. 14.
    Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18(4), 1187–1208 (2008).  https://doi.org/10.1137/060657741 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Guerra Vázquez, F., Rückmann, J.-J.: Extensions of the Kuhn–Tucker constraint qualification to generalized semi-infinite programming. SIAM J. Optim. 15(3), 926–937 (2005).  https://doi.org/10.1137/s1052623403431500 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Guerra Vázquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. 217(2), 394–419 (2008).  https://doi.org/10.1016/j.cam.2007.02.012 MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hemmati, M., Smith, J.C.: A mixed-integer bilevel programming approach for a competitive prioritized set covering problem. Discrete Optim. 20, 105–134 (2016).  https://doi.org/10.1016/j.disopt.2016.04.001 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993).  https://doi.org/10.1137/1035089 MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jan, R.-H., Chern, M.-S.: Nonlinear integer bilevel programming. Eur. J. Oper. Res. 72(3), 574–587 (1994).  https://doi.org/10.1016/0377-2217(94)90424-3 zbMATHGoogle Scholar
  20. 20.
    Jongen, HTh, Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83(1–3), 145–158 (1998).  https://doi.org/10.1007/bf02680555 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kleniati, P.-M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: theoretical development. J. Glob. Optim. 60(3), 425–458 (2014).  https://doi.org/10.1007/s10898-013-0121-7 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kleniati, P.-M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: convergence analysis and numerical results. J. Glob. Optim. 60(3), 459–481 (2014).  https://doi.org/10.1007/s10898-013-0120-8 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2015).  https://doi.org/10.1016/j.compchemeng.2014.06.004 Google Scholar
  24. 24.
    Lemonidis, P.: Global optimization algorithms for semi-infinite and generalized semi-infinite programs. Ph.D. thesis, Massachusetts Institute of Technology, Boston, MA (2008)Google Scholar
  25. 25.
    Liu, Z., Gong, Y.-H.: Semi-infinite quadratic optimisation method for the design of robust adaptive array processors. IEE Proc. F 137(3), 177–182 (1990)Google Scholar
  26. 26.
    Lo Bianco, C.G., Piazzi, A.: A hybrid algorithm for infinitely constrained optimization. Int. J. Syst. Sci. 32(1), 91–102 (2001).  https://doi.org/10.1080/00207720121051 MathSciNetzbMATHGoogle Scholar
  27. 27.
    López, M.A.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007).  https://doi.org/10.1002/0471667196.ess3211 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mitsos, A.: Global solution of nonlinear mixed-integer bilevel programs. J. Glob. Optim. 47(4), 557–582 (2010).  https://doi.org/10.1007/s10898-009-9479-y MathSciNetzbMATHGoogle Scholar
  29. 29.
    Mitsos, A.: Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60(10–11), 1291–1308 (2011).  https://doi.org/10.1080/02331934.2010.527970 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Mitsos, A., Tsoukalas, A.: Global optimization of generalized semi-infinite programs via restriction of the right hand side. J. Glob. Optim. 61(1), 1–17 (2015).  https://doi.org/10.1007/s10898-014-0146-6 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. 42(4), 475–513 (2008a).  https://doi.org/10.1007/s10898-007-9260-z MathSciNetzbMATHGoogle Scholar
  32. 32.
    Mitsos, A., Lemonidis, P., Lee, C.K., Barton, P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19(1), 77–113 (2008b).  https://doi.org/10.1137/060674685 MathSciNetzbMATHGoogle Scholar
  33. 33.
    Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990).  https://doi.org/10.1287/opre.38.5.911 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Oluwole, O.O., Barton, P.I., Green, W.H.: Obtaining accurate solutions using reduced chemical kinetic models: a new model reduction method for models rigorously validated over ranges. Combust. Theor. Model. 11(1), 127–146 (2007).  https://doi.org/10.1080/13647830600924601 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29(1), 21–89 (1987).  https://doi.org/10.1137/1029002 MathSciNetGoogle Scholar
  36. 36.
    Rückmann, J.-J., Shapiro, A.: First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl. 101(3), 677–691 (1999).  https://doi.org/10.1023/a:1021746305759 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rückmann, J.-J., Shapiro, A.: Second-order optimality conditions in generalized semi-infinite programming. Set-Valued Anal. 9(1–2), 169–186 (2001).  https://doi.org/10.1023/a:1011239607220 MathSciNetzbMATHGoogle Scholar
  38. 38.
    Rückmann, J.-J., Stein, O.: On linear and linearized generalized semi-infinite optimization problems. Ann. Oper. Res. 101(1–4), 191–208 (2001).  https://doi.org/10.1023/a:1010972524021 MathSciNetzbMATHGoogle Scholar
  39. 39.
    Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Rückmann, J.-J. (eds.) Semi-infinite Programming, pp. 195–275. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4757-2868-2_7 Google Scholar
  40. 40.
    Rosenthal, R.E.: GAMS—a user’s guide. Technical report, GAMS Development Corporation, Washington, DC (2017)Google Scholar
  41. 41.
    Sahin, K.H., Ciric, A.R.: A dual temperature simulated annealing approach for solving bilevel programming problems. Comput. Chem. Eng. 23(1), 11–25 (1998).  https://doi.org/10.1016/s0098-1354(98)00267-1 Google Scholar
  42. 42.
    Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Springer, Boston (1997).  https://doi.org/10.1007/978-1-4615-6305-1 zbMATHGoogle Scholar
  43. 43.
    Stein, O.: Bi-Level Strategies in Semi-Infinite Programming, volume 71 of Nonconvex Optimization and Its Applications. Springer, New York (2003).  https://doi.org/10.1007/978-1-4419-9164-5 Google Scholar
  44. 44.
    Stein, O.: A semi-infinite approach to design centering. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings: Theory, Applications, and Algorithms, pp. 209–228. Springer, Boston (2006).  https://doi.org/10.1007/0-387-34221-4_10 Google Scholar
  45. 45.
    Stein, O.: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223(2), 312–320 (2012).  https://doi.org/10.1016/j.ejor.2012.06.009 MathSciNetzbMATHGoogle Scholar
  46. 46.
    Stein, O., Steuermann, P.: The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets. Math. Program. 136(1), 183–207 (2012).  https://doi.org/10.1007/s10107-012-0556-5 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142(3), 444–462 (2002).  https://doi.org/10.1016/s0377-2217(01)00307-1 MathSciNetzbMATHGoogle Scholar
  48. 48.
    Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42(3), 769–788 (2003).  https://doi.org/10.1137/s0363012901398393 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Still, G.: Generalized semi-infinite programming: theory and methods. Eur. J. Oper. Res. 119(2), 301–313 (1999).  https://doi.org/10.1016/s0377-2217(99)00132-0 MathSciNetzbMATHGoogle Scholar
  50. 50.
    Stuber, M.D., Barton, P.I.: Semi-infinite optimization with implicit functions. Ind. Eng. Chem. Res. 54(1), 307–317 (2015).  https://doi.org/10.1021/ie5029123 Google Scholar
  51. 51.
    Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 424–460 (2015).  https://doi.org/10.1080/10556788.2014.924514 MathSciNetzbMATHGoogle Scholar
  52. 52.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005).  https://doi.org/10.1007/s10107-005-0581-8 MathSciNetzbMATHGoogle Scholar
  53. 53.
    Thirwani, D., Arora, S.R.: An algorithm for the integer linear fractional bilevel programming problem. Optimization 39(1), 53–67 (1997).  https://doi.org/10.1080/02331939708844271 MathSciNetzbMATHGoogle Scholar
  54. 54.
    Tsoukalas, A., Rustem, B.: A feasible point adaptation of the Blankenship and Falk algorithm for semi-infinite programming. Optim. Lett. 5(4), 705–716 (2011).  https://doi.org/10.1007/s11590-010-0236-4 MathSciNetzbMATHGoogle Scholar
  55. 55.
    Tsoukalas, A., Rustem, B., Pistikopoulos, E.N.: A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems. J. Glob. Optim. 44(2), 235–250 (2009).  https://doi.org/10.1007/s10898-008-9321-y MathSciNetzbMATHGoogle Scholar
  56. 56.
    Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Glob. Optim. 5(3), 291–306 (1994).  https://doi.org/10.1007/bf01096458 MathSciNetzbMATHGoogle Scholar
  57. 57.
    Weistroffer, V., Mitsos, V.: Relaxation-based bounds for GSIPs. In: Parametric Optimization and Related Topics X (paraoptX), Karlsruhe, Germany (2010)Google Scholar
  58. 58.
    Yue, D., Gao, J., Zeng, B., You, F.: A projection-based reformulation and decomposition algorithm for global optimization of mixed integer bilevel linear programs. arXiv:1707.06196v2 (2018)
  59. 59.
    Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Optim. Online 1–34 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aachener VerfarhenstechnikRWTH Aachen UniversityAachenGermany

Personalised recommendations