Advertisement

On the hierarchical structure of Pareto critical sets

  • Bennet GebkenEmail author
  • Sebastian Peitz
  • Michael Dellnitz
Article
  • 34 Downloads

Abstract

In this article we show that the boundary of the Pareto critical set of an unconstrained multiobjective optimization problem (MOP) consists of Pareto critical points of subproblems where only a subset of the set of objective functions is taken into account. If the Pareto critical set is completely described by its boundary (e.g., if we have more objective functions than dimensions in decision space), then this can be used to efficiently solve the MOP by solving a number of MOPs with fewer objective functions. If this is not the case, the results can still give insight into the structure of the Pareto critical set.

Keywords

Multiobjective optimization Many-objective optimization Pareto set Pareto critical set 

Notes

Acknowledgements

This research was funded by the DFG Priority Programme 1962 ”Non-smooth and Com-plementarity-based Distributed Parameter Systems”.

References

  1. 1.
    Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. Evolut. Comput. 17(2), 135–166 (2009)CrossRefGoogle Scholar
  2. 2.
    De Melo, W.: On the structure of the Pareto set of generic mappings. Bull. Braz. Math. Soc. 7(2), 121–126 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Degiovanni, M., Lucchetti, R., Ribarska, N.: Critical point theory for vector valued functions. J. Convex Anal. 9, 415–428 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    di Pierro, F., Khu, S.T., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)CrossRefGoogle Scholar
  6. 6.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  7. 7.
    Enrico, M., Elena, M., Matteo, R.: A Morse-type index for critical points of vector functions. Economics and quantitative methods, Department of Economics, University of Insubria (2007). URL https://EconPapers.repec.org/RePEc:ins:quaeco:qf0702. Accessed 9 Jan 2019
  8. 8.
    Giorgi, G., Guerraggio, A.: On the notion of tangent cone in mathematical programming. Optimization 25(1), 11–23 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Springer, Birkhäuser, Basel (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2419–2426 (2008)Google Scholar
  11. 11.
    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)Google Scholar
  12. 12.
    Lange, K.: Optimization, 2nd edn. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, J.: Introduction to Smooth Manifolds. Springer, New York (2012)CrossRefGoogle Scholar
  14. 14.
    López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 673–680. ACM (2008)Google Scholar
  15. 15.
    Lovison, A.: Singular continuation: generating piecewise linear approximations to pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lovison, A., Pecci, F.: Hierarchical Stratification of Pareto Sets. arXiv:1407.1755 (2014)
  17. 17.
    Lowe, T.J., Thisse, J.F., Ward, J.E., Wendell, R.E.: On efficient solutions to multiple objective mathematical programs. Manag. Sci. 30, 1346–1349 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Malivert, C., Boissard, N.: Structure of efficient sets for strictly quasi convex objectives. J. Convex Anal. 1(2), 143–150 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Miglierina, E., Molho, E., Rocca, M.: Critical points index for vector functions and vector optimization. J. Optim. Theory Appl. 138(3), 479–496 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to compute the bounded pareto front of practical multiobjective optimization problems. SIAM J. Optim. 20(2), 915–934 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peitz, S.: Exploiting structure in multiobjective optimization and optimal control. In: Ph.D. Thesis, Paderborn University, Paderborn(2017)Google Scholar
  23. 23.
    Popovici, N.: Pareto reducible multicriteria optimization problems. Optimization 54(3), 253–263 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)CrossRefGoogle Scholar
  25. 25.
    Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans. Evolut. Comput. 15(4), 444–455 (2011)CrossRefGoogle Scholar
  26. 26.
    Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K., Alon, U.: Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336(6085), 1157–1160 (2012)CrossRefGoogle Scholar
  27. 27.
    Singh, H.K., Isaacs, A., Ray, T.: A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evolut. Comput. 15(4), 539–556 (2011)CrossRefGoogle Scholar
  28. 28.
    Smale, S.: Global analysis and economics I: Pareto optimum and a generalization of Morse theory. In: Dynamical Systems, pp. 531–544. Academic Press, Cambridge (1973)Google Scholar
  29. 29.
    Smale, S.: Optimizing several functions. In: Proceedings of International Conference on Manifolds and Related Topics in Topology, pp. 69–75. University of Tokyo, Tokyo (1975)Google Scholar
  30. 30.
    Sun, J.Q., Xiong, F.R., Schütze, O., Hernández, C.: Cell Mapping Methods. Springer, New York (2018)zbMATHGoogle Scholar
  31. 31.
    Wan, Y.: Morse theory for two functions. Topology 14(3), 217–228 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Witting, K.: Numerical algorithms for the treatment of parametric multiobjective optimization problems and applications. In: Ph.D. Thesis, Paderborn University, Paderborn (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bennet Gebken
    • 1
    Email author
  • Sebastian Peitz
    • 1
  • Michael Dellnitz
    • 1
  1. 1.Chair of Applied MathematicsPaderborn UniversityPaderbornGermany

Personalised recommendations