Advertisement

Journal of Global Optimization

, Volume 73, Issue 4, pp 761–788 | Cite as

On the complexity of quasiconvex integer minimization problem

  • A. Yu. Chirkov
  • D. V. GribanovEmail author
  • D. S. Malyshev
  • P. M. Pardalos
  • S. I. Veselov
  • N. Yu. Zolotykh
Article

Abstract

In this paper, we consider the class of quasiconvex functions and its proper subclass of conic functions. The integer minimization problem of these functions is considered, assuming that the optimized function is defined by the comparison oracle. We will show that there is no a polynomial algorithm on \(\log R\) to optimize quasiconvex functions in the ball of radius R using only the comparison oracle. On the other hand, if the optimized function is conic, then we show that there is a polynomial on \(\log R\) algorithm (the dimension is fixed). We also present an exponential on the dimension lower bound for the oracle complexity of the conic function integer optimization problem. Additionally, we give examples of known problems that can be polynomially reduced to the minimization problem of functions in our classes.

Keywords

Nonlinear integer programming Conic functions Quasiconvex functions Quasiconvex polynomials Convex functions Comparison oracle Oracle model Complexity 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation Grant No. 17-11-01336.

References

  1. 1.
    Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quadratic polynomials and related problems. Math. Program. 137(1–2), 453–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 601–610 (2001)Google Scholar
  3. 3.
    Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proceedings of 17th IEEE Annual Conference on Computational Complexity, pp. 53–57 (2002)Google Scholar
  4. 4.
    Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banaszczyk, W., Litvak, A., Pajor, A., Szarek, S.: The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24(3), 728–750 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geometry. SIAM J. Optim. 27(2), 866–889 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. Theor. Comput. Sci. 410(18), 1648–1665 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N: Mixed integer programming with convex/concave constraints: fixed-parameter tractability and applications to multicovering and voting. CoRR, arXiv:1709.02850 (2017)
  9. 9.
    Chirkov, A.: Minimization of a quasiconvex function on 2-dimensional lattice. Vestnik Lobachevsky State Univ Nizhni Novgorod Model. Opt. Control Ser. 1, 227–238 (2003). (in Russian)Google Scholar
  10. 10.
    Dadush, D.: Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), Georgia Institute of Technology (2012)Google Scholar
  11. 11.
    Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 11), pp. 580–589 (2011)Google Scholar
  12. 12.
    Dinur, I., Kindler, G., Safra, S.: Approximating CVP to within almost-polynomial factors is NP-hard. In: 39th Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, CA (1998)Google Scholar
  13. 13.
    Eisenbrand, F.: Fast integer programming in fixed dimension. ESA Lect. Notes Comput. Sci. 2832, 196–207 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eisenbrand, F.: Integer programming and algorithmic geometry of numbers. In: Jünger, M., Liebling, T., Naddef, D., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming, pp. 1958–2008. Springer, Berlin (2010)Google Scholar
  15. 15.
    Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. In: Proceedings of 27th Annual Symposium on Computational Geometry, pp. 417–423 (2011)Google Scholar
  16. 16.
    Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given norm. Lect. Notes Comput. Sci 162, 194–202 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Frank, A., Tardos, E.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gavenčiak, T., Knop, D., Koutecký, M.: Applying Convex Integer Programming: Sum Multicoloring and Bounded Neighborhood Diversity. CoRR, arXiv:1711.02032 (2017)
  20. 20.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hanrot, G., Pujol, X., Stehle, D.: Algorithms for the shortest and closest lattice vector problems. Lect. Notes Comput. Sci. 6639, 159–190 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21(4), 543–556 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Heinz, S.: Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM Control Optim. Calc. Var. 14(4), 795–801 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hildebrand, R., Köppe, M.: A new lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n \log n)}\). Discrete Optim. 10(1), 69–84 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of 15th Annual ACM Symposium on Theory of Computing, pp. 99–108 (1983)Google Scholar
  26. 26.
    Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Khachiyan, L., Porkolab, L.: Integer optimization on convex semialgebraic sets. Discrete Comput. Geom. 23(2), 207–224 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Khinchin, A.: A quantitative formulation of Kronecker’s theory of approximation. Izvestiya Akademii Nauk SSR Seriya Matematika 12, 113–122 (1948). (in Russian)Google Scholar
  29. 29.
    Köppe, M.: On the complexity of nonlinear mixed-integer optimization. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications 154. Springer, New York (2012)Google Scholar
  30. 30.
    Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. Comput. 30(6), 2008–2035 (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: STOC, pp. 351–358 (2010)Google Scholar
  34. 34.
    Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983)Google Scholar
  35. 35.
    Oertel, T.: Integer Convex Minimization in Low Dimensions. Thes. doct. phylosophy, Eidgenössische Technische Hochschule, Zürich (2014)Google Scholar
  36. 36.
    Oertel, T., Wagner, C., Weismantel, R.: Convex Integer Minimization in Fixed Dimension. https://arxiv.org/pdf/1203.4175.pdft (2012)
  37. 37.
    Oertel, T., Wagner, C., Weismantel, R.: Integer convex minimization by mixed integer linear optimization. Oper. Res. Lett. 42(6–7), 424–428 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rudelson, M.: Distances between non-symmetric convex bodies and the \(M M^*\)-estimate. Positivity 4(2), 161–178 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar
  40. 40.
    Veselov, S., Gribanov, D., Zolotykh, N., Chirkov, A.: Minimization of symmetric quasiconvex function on 2-dimensional lattice. Discrete Anal. Oper. Res. (2018).  https://doi.org/10.17377/daio.2018.25.585. (in Russian)
  41. 41.
    Yudin, D., Nemirovskii, A.: Information complexity and efficient methods for the solution of convex extremal problems. Ekonomika i Matematicheskie Metody 12, 357–369 [Translated in Matekon 13 (1977) 25–45] (1976). (in Russian) Google Scholar
  42. 42.
    Yudin, D., Nemirovski, A.: Evaluation of the information complexity of mathematical programming problems. Ekonomika i Matematicheskie Metody 13(2), 3–45 (1976). (in Russian)Google Scholar
  43. 43.
    Zolotykh, N., Chirkov, A.: Lower bound of the quasiconvex minimization problem on an integral lattice. Vestnik of Lobachevsky State University of Nizhni Novgorod Model. Opt. Control 5, 93–96 (2012). (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Yu. Chirkov
    • 1
  • D. V. Gribanov
    • 1
    • 2
    Email author
  • D. S. Malyshev
    • 2
  • P. M. Pardalos
    • 2
    • 3
  • S. I. Veselov
    • 1
  • N. Yu. Zolotykh
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
  2. 2.National Research University Higher School of EconomicsNizhny NovgorodRussian Federation
  3. 3.University of FloridaGainesvilleUSA

Personalised recommendations