Journal of Global Optimization

, Volume 73, Issue 4, pp 869–889 | Cite as

Properties of the nonlinear scalar functional and its applications to vector optimization problems

  • Ying GaoEmail author
  • Xin-Min Yang


The nonconvex separation theorem for the Hiriart-Urruty nonlinear scalar functional (Hiriart-Urruty in Math Oper Res 4:79–97, 1979) and its sublinearity and monotonicity with respect to convex cone have played an important role in the research of vector optimization problems. By means of these special properties, this functional also can be used as a coherent measure of an investment. This work is devoted to investigating the properties of this special scalarizing function with respect to a co-radiant set, which is more general than a cone and is also a main tool in the study of approximate solutions in vector optimization problems. We first show that although this scalar functional with respect to the co-radiant set is not necessarily positively homogeneous, it satisfies some special properties, which imply it is a co-radiant function and also has subadditivity and monotonicity under the convexity assumption. Based on the subadditivity property, we calculate the classical (Fenchel) subdifferentials for the scalar functional. Finally, as the applications of our results, we give the nonlinear scalar characterizations for the approximate solutions of vector optimization problems, and establish the Lagrange multiplier rules in term of the Mordukhovich subdifferential in Asplund spaces.


Nonlinear scalar functional Vector optimization problems Approximate solutions Scalarizations Lagrange multiplier rules 


  1. 1.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, London (1985)zbMATHGoogle Scholar
  2. 2.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kutateladze, S.S.: Convex \(\epsilon -\)programming. Soviet Math Dokl 20, 390–393 (1979)Google Scholar
  4. 4.
    Loridan, P.: Epsilon-solutions in vector optimization problems. J. Optim. Theory Appl. 43(2), 265–276 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Helbig, S.: One new concept for \(\epsilon \)-efficency. Talk at “optimization days 1992”. Montreal (1992)Google Scholar
  6. 6.
    White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushimi, M., Tone, K. (eds.) Proceedings of APORS (1994), pp. 497–504. World Scientific, Singapore (1995)Google Scholar
  8. 8.
    Gutiérrez, C., Jimenez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64(1), 165–185 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17(3), 688–710 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problem via improvement sets. J. Optim. Theory Appl. 150(3), 516–529 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gutiérrez, C., Jiménez, B., Novo, V.: Improvement sets and vector optimization. Eur. J. Oper. Res. 223(2), 304–311 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, Y., Yang, X.M., Teo, K.L.: Optimality conditions for approximate solutions of vector optimization problems. J. Ind. Manag. Optim. 11(3), 495–510 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gao, Y., Hou, S.H., Yang, X.M.: Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl. 152(1), 97–120 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gao, Y., Yang, X.M., Yang, J., Yan, H.: Scalarizations and lagrange multipliers for approximate solutions in vector optimization problems with set-valued maps. J. Ind. Manag. Optim. 2, 673–683 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zhao, K.Q., Yang, X.M.: E-Benson proper efficiency in vector optimization. Optimization 64(4), 739–752 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gutiérrez, C., Lopéz, R., Novo, V.: Generalized \(\epsilon \)-quasi-solutions in multiobjective optimization problems: existence results and optimality conditions. Nonlinear Anal. 72(11), 4331–4346 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gerstewitz, C., Iwaow, E.: Dualität für nichtkonvexe Vektoroptimierungs problem. Wiss. Z. Tech. Hochsch. Ilmenau 31(2), 61–81 (1985)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Göpfert, A., Riahi, H., Tammer, C., et al.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
  19. 19.
    Hiriart-Urruty, J.B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4(1), 79–97 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hiriart-Urruty, J.B.: New concepts in nondifferentiable programming. Bull. Soc. Math. France Mem. 60, 57–85 (1979)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42(3), 1071–1086 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for \(\epsilon \)-pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ha, T.X.D.: The Ekeland variational principle for Henig proper minimizers and super minimizers. J. Math. Anal. Appl. 364, 156–170 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Eichfelder, G.: Variable ordering structures in vector optimization. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Developments in Vector Optimization, pp. 95–126. Springer, Berlin (2012)CrossRefGoogle Scholar
  25. 25.
    Ginchev, I., Guerraggio, A., Rocca, M.: Isolated minimizers and proper efficiency for \(\text{ C }^{0,1}\) constrained vector optimization problems. J. Math. Anal. Appl. 309(1), 353–368 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM. J. Control Optim. 48(2), 881–908 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Oveisiha, M., Zafarani, J.: Super efficient solutions for set-valued maps. Optimization 62(6), 817–834 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhao, K.Q., Xia, Y.M., Yang, X.M.: Nonlinear scalarization characterizations of \(E\)-efficiency in vector optimization. Taiwan. J. Math. 19(2), 455–466 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Miglierina, E., Molho, E., Rocca, M.: Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126(2), 391–409 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Program. 119, 215–237 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63(1), 87–106 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xu, Y.D., Li, S.J.: A new nonlinear scalarization function and applications. Optimization 65(1), 207–231 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Xu, Y.D., Li, S.J.: Gap functions and error bounds for weak vector variational inequalities. Optimization 63(9), 1339–1352 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  35. 35.
    Artzner, P., Delbean, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Daryaei, M.H., Mohebi, H.: Global minimization of the difference of strictly non-positive valued affine ICR functions. J. Glob. Optim. 61, 311–323 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Martnez-Legaz, J.E., Rubinov, A.M., Schaible, S.: Increasing quasi-concave co-radiant functions with applications in mathematical economics. Math. Methods Oper. Res. 61, 261–280 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mohebi, H.: Abstract convexity of radiant functions with applications. J. Glob. Optim. 55, 521–538 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yang, X.M., Gao, Y., Zhao, K.Q.: Scalarization methods for vector optimization problems. J. Optim. Theory Appl. (submitted)Google Scholar
  41. 41.
    Lin, C.Y., Dong, J.L.: Method and Theory of Multiobjective Optimization. Jilin Education Press, Changchun (1990)Google Scholar
  42. 42.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. II: Applications. Grundlehren der Mathematischen Wissenschaften (Comprehensive Studies in Mathematics). Springer, Berlin (2006)CrossRefGoogle Scholar
  43. 43.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. 122, 301–347 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Fabian, M., Mordukhovich, B.S.: Sequential normal compactness versus topological normal compactness in variational analysis. Nonlinear Anal. 54, 1057–1067 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesChongqing Normal UniversityChongqingChina

Personalised recommendations