Consensus and balancing on the three-sphere

  • Aladin CrnkićEmail author
  • Vladimir Jaćimović


We study consensus and anti-consensus on the 3-sphere as the global optimization problems. The corresponding gradient descent algorithm is a dynamical systems on \(S^3\), that is known in Physics as non-Abelian Kuramoto model. This observation opens a slightly different insight into some previous results and also enables us to prove some novel results concerning consensus and balancing over the complete graph. In this way we fill some gaps in the existing theory. In particular, we prove that the anti-consensus algorithm over the complete graph on \(S^3\) converges towards a balanced configuration if a certain mild condition on initial positions of agents is satisfied. The form of this condition indicates an unexpected relation with some important constructions from Complex Analysis.


Consensus Balancing 3-sphere Synchronization Non-Abelian Kuramoto models 



The authors wish to thank anonymous referees for their valuable comments and suggestions. The second author acknowledges partial support of the Ministry of Science of Montenegro and the COST action CA16228 “European Network for Game Theory”.

Supplementary material

Supplementary material 1 (mp4 22966 KB)

Supplementary material 2 (mp4 6143 KB)


  1. 1.
    Caponigro, M., Lai, A.C., Piccoli, B.: A nonlinear model of opinion formation on the sphere. Discrete Contin. Dyn. Syst. A 35(9), 4241–4268 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chaturvedi, N.A., Sanyal, A.K., McClamroch, N.H.: Rigid-body attitude control. IEEE Control Syst. 31(3), 30–51 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Douady, A., Earle, C.J.: Conformally natural extension of homeomorphisms of the circle. Acta Math. 157(1), 23–48 (1986)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jaćimović, V., Crnkić, A.: Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Chaos Interdiscip. J. Nonlinear Sci. 28(8), 083105 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kato, S., McCullagh, P.: Conformal mapping for multivariate Cauchy families (2015). arXiv preprint arXiv:1510.07679
  7. 7.
    Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: Proceedings of International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422 (1975)Google Scholar
  8. 8.
    Lohe, M.A.: Non-Abelian Kuramoto models and synchronization. J. Phys. A Math. Theor. 42(39), 395101 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A Math. Theor. 43(46), 465301 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Markdahl, J., Gonçalves, J.: Global converegence properties of a consensus protocol on the \(n\)-sphere. In: Proceedings of 55th IEEE Conference Decision and Control, pp. 3487–3492 (2016)Google Scholar
  11. 11.
    Markdahl, J., Thunberg, J., Gonçalves, J.: Almost global consensus on the \(n\)-sphere. IEEE Trans. Autom. Control 63(6), 1664–1675 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Marvel, S.A., Mirollo, R.E., Strogatz, S.H.: Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action. Chaos Interdiscip. J. Nonlinear Sci. 19(4), 043104 (2009)CrossRefGoogle Scholar
  13. 13.
    Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  15. 15.
    Olfati-Saber, R.: Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks. In: Proceedings of 45th IEEE Conference Decision and Control, pp. 5060–5066 (2006)Google Scholar
  16. 16.
    Paley, D.A.: Stabilization of collective motion on a sphere. Automatica 45(1), 212–216 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  18. 18.
    Sarlette, A.: Geometry and Symmetries in Coordination Control. Université de Liège, Liège (2009)Google Scholar
  19. 19.
    Sarlette, A., Sepulchre, R.: Consensus optimization on manifolds. SIAM J. Control Optim. 48(1), 56–76 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sarlette, A., Sepulchre, R., Leonard, N.E.: Autonomous rigid body attitude synchronization. Automatica 45(2), 572–577 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sarlette, A., Sepulchre, R.: Synchronization on the circle (2009). arXiv preprint arXiv:0901.2408
  22. 22.
    Sepulchre, R.: Consensus on nonlinear spaces. Ann. Rev. Control 35(1), 56–64 (2011)CrossRefGoogle Scholar
  23. 23.
    Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53(3), 706–719 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MontenegroPodgoricaMontenegro
  2. 2.Faculty of Technical EngineeringUniversity of BihaćBihaćBosnia and Herzegovina

Personalised recommendations