Advertisement

Journal of Global Optimization

, Volume 73, Issue 3, pp 515–535 | Cite as

A generic interval branch and bound algorithm for parameter estimation

  • Bertrand Neveu
  • Martin de la Gorce
  • Pascal Monasse
  • Gilles TrombettoniEmail author
Article

Abstract

In engineering sciences, parameter estimation is a challenging problem consisting in computing the parameters of a parametric model that fit observed data. The system is defined by unknown parameters and sometimes internal constraints. The observed data provide constraints on the parameters. This problem is particularly difficult when some observation constraints correspond to outliers and/or the constraints are non convex. The ransac randomized algorithm can efficiently handle it, but is non deterministic and must be specialized for every problem. This paper presents the first generic interval branch and bound algorithm that produces a model maximizing the number of observation constraints satisfied within a given tolerance. This tool is inspired by the IbexOpt branch and bound algorithm for constrained global optimization (NLP) and is endowed with an improved version of a relaxed intersection operator applied to observations. Experiments have been carried out on two different computer vision problems. They highlight a significant speedup w.r.t. Jaulin et al.’s interval method in 2D and 3D shape recognition problems (having three parameters). We have also obtained promising results on a stereo vision problem where the essential matrix (five parameters) is estimated exactly at a good accuracy in hours for models having a thousand points, a typical size for such problems.

Keywords

Intervals Parameter estimation Interval branch and bound Outliers 

References

  1. 1.
    Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner regions for global optimization under inequality constraints. J. Glob. Optim. (JOGO) 60(2), 145–164 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bazin, J.C., Seo, Y., Hartley, R., Pollefeys, M.: Globally optimal inlier set maximization with unknown rotation and focal length. In: Proceeding of European Conference of Computer Vision (ECCV), LNCS, vol. 8690, pp. 803–817 (2014)Google Scholar
  3. 3.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceeding of International Conference on Logic Programming (ICLP), pp. 230–244 (1999)Google Scholar
  4. 4.
    Bethencourt, A., Jaulin, L.: 3D reconstruction using interval methods on the kinect device coupled with an IMU. Int. J. Adv. Robot. Syst. 10, 93 (2013)CrossRefGoogle Scholar
  5. 5.
    Campbell, D., Peterson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: IEEE International Conference on Computer Vision (ICCV) (2017)Google Scholar
  6. 6.
    Carbonnel, C., Trombettoni, G., Vismara, P., Chabert, G.: Q-intersection algorithms for constrained-based robust parameter estimation. In: Proceeding of Conference of the Association for the Advancement of Artificial Intelligence (AAAI), pp. 2630–2636 (2014)Google Scholar
  7. 7.
    Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chew, P., Marzullo, K.: Masking failures of multidimensional sensors. In: Proceeding of Reliable Distributed Systems, pp. 32–41 (1991)Google Scholar
  9. 9.
    Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. In: Proceeding of CVPR 15 (2015)Google Scholar
  10. 10.
    Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 758–772 (2017)CrossRefGoogle Scholar
  11. 11.
    Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. Reliab. Comput. 5(3), 213–228 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random sampling consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefGoogle Scholar
  13. 13.
    Fusiello, A., Benedetti, A., Farenzena, M., Busti, A.: Globally convergent autocalibration using interval analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(12), 1633–1638 (2004)CrossRefGoogle Scholar
  14. 14.
    Hartley, R., Kahl, F.: Global optimization through searching rotation space and optimal estimation of the essential matrix. In: Proceedings of ICCV (2007)Google Scholar
  15. 15.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  16. 16.
    Jaulin, L., Bazeille, S.: Image shape extraction using interval methods. In: Proceeding of the 16th IFAC Symposium on System, pp. 378–383 (2009)Google Scholar
  17. 17.
    Jaulin, L., Walter, E.: Guaranteed robust nonlinear minimax estimation. IEEE Trans. Autom. Control 47, 1857–1864 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jaulin, L., Walter, E., Didrit, O.: Guaranteed robust nonlinear parameter bounding. In: CESA’96 IMACS Multiconference (Symposium on Modelling, Analysis and Simulation), pp. 1156–1161 (1996)Google Scholar
  19. 19.
    Lai, K., Fox, D.: Object recognition in 3D point clouds using web data and domain adaptation. Int. J. Robot. Res. 29(8), 1019–1037 (2010)CrossRefGoogle Scholar
  20. 20.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1981)CrossRefGoogle Scholar
  21. 21.
    Messine, F.: Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution des problèmes avec contraintes. Ph.D. Thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse (1997)Google Scholar
  22. 22.
    Misener, R., Floudas, C.: ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J. Glob. Optim. (JOGO) 59(2), 503–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moisan, L., Moulon, P., Monasse, P.: Fundamental matrix of a stereo pair, with a contrario elimination of outliers. Image Process. Line 6, 89–113 (2016).  https://doi.org/10.5201/ipol.2016.147 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Neveu, B., de la Gorce, M., Trombettoni, G.: Improving a constraint programming approach for parameter estimation. In: 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 852–859 (2015)Google Scholar
  25. 25.
    Neveu, B., Trombettoni, G., Araya, I.: Adaptive constructive interval disjunction: algorithms and experiments. Constr. J. 20(7), 452–467 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Neveu, B., Trombettoni, G., Araya, I.: Node selection strategies in interval branch and bound algorithms. J. Glob. Optim. 64(2), 289–304 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13, 1–31 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)CrossRefGoogle Scholar
  29. 29.
    Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: Usac: A universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2238 (2013)CrossRefGoogle Scholar
  30. 30.
    Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26(2), 214–226 (2007)CrossRefGoogle Scholar
  31. 31.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval linearizations for global optimization. In: Proceeding AAAI, pp. 99–104 (2011)Google Scholar
  33. 33.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  34. 34.
    Yang, J., Li, H., Jia, Y.: Optimal essential matrix optimization via inlier-set maximization. In: Proceeding of European Conference of Computer Vision (ECCV), pp. 111–126 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIGM, École des Ponts ParisTechUniversité Paris–EstParisFrance
  2. 2.LIRMMUniversity of Montpellier, CNRSMontpellierFrance

Personalised recommendations