Advertisement

Journal of Global Optimization

, Volume 73, Issue 2, pp 389–410 | Cite as

Robot path planning in a dynamic environment with stochastic measurements

  • Adriano Zanin ZambomEmail author
  • Brian Seguin
  • Feifei Zhao
Article
  • 50 Downloads

Abstract

We study the problem of trajectory planning for autonomous vehicles designed to minimize the travel distance while avoiding moving obstacles whose position and speed are not known. Because, in practice, observations from sensors have measurement errors, the stochasticity of the data is modeled using maximum likelihood estimators, which are shown to be consistent as the sample size increases. To comply with the kinematic constraints of the vehicle, we consider smooth trajectories that can be represented by a linear combination of B-spline basis functions, transforming the infinite-dimensional problem into a finite-dimensional one. Moreover, a smooth penalty function is added to the travel distance, transforming the constrained optimization problem into an unconstrained one. The planned stochastic trajectory, obtained from the minimization problem with stochastic confidence regions, is shown to converge almost surely to the deterministic one as the number of sensor observations increases. Finally, we present two simulation studies to demonstrate the proposed method.

Keywords

Autonomous vehicle B-splines Kinematics Constrained optimization Moving obstacle avoidance 

References

  1. 1.
    Barraquand, J., Latombe, J.C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2), 121 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belkhouche, F.: Reactive path planning in a dynamic environment. IEEE Trans. Robot. 25(4), 902–911 (2009)CrossRefGoogle Scholar
  3. 3.
    Bodin, P., Villemoes, L.F., Wahlberg, B.: Selection of best orthonormal rational basis. SIAM J. Control Optim. 38(4), 995–1032 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bouthemy, P.: A maximum likelihood framework for determining moving edges. IEEE Trans. Pattern Anal. Mach. Intell. 11(5), 499–511 (1989)CrossRefGoogle Scholar
  5. 5.
    DeVore, R., Petrova, G., Temlyakov, V.: Best basis selection for approximation in l p. Found. Comput. Math. 3(2), 161–185 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dias, R., Garcia, N.L., Zambom, A.Z.: A penalized nonparametric method for nonlinear constrained optimization based on noisy data. Comput. Optim. Appl. 45(3), 521–541 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dias, R., Garcia, N.L., Zambom, A.Z.: Monte carlo algorithm for trajectory optimization based on markovian readings. Comput. Optim. Appl. 51(1), 305–321 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Elnagar, A., Gupta, K.: Motion prediction of moving objects based on autoregressive model. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(6), 803–810 (1998)CrossRefGoogle Scholar
  9. 9.
    Fiorini, P., and Shiller, Z.: Motion planning in dynamic environments using the relative velocity paradigm. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, vol. 1 pp. 560–565 (1993)Google Scholar
  10. 10.
    Fliess, M., Levine, J., Martin, P., Rouchon, P.: On differentially flat nonlinear systems. IFAC Proc. Vol. 25(13), 159–163 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, C.Q., Shi, S.J., Wang, X.G., Chung, W.K.: Parallel force/position controls for robot manipulators with uncertain kinematics. Int. J. Robot. Autom. 20, 158–168 (2005)Google Scholar
  12. 12.
    Johnson, R.A., Wichern, D.W. (eds.): Applied Multivariate Statistical Analysis. Prentice-Hall Inc, Upper Saddle River (2007)zbMATHGoogle Scholar
  13. 13.
    Kala, R., Shukla, A., Tiwari, R.: Robot path planning using dynamic programming with accelerating nodes. Paladyn 3(1), 23–34 (2012)Google Scholar
  14. 14.
    Karlin, S.: Some variational problems on certain sobolev spaces and perfect splines. Bull. Am. Math. Soc. 1, 124–128 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lachout, P., Liebscher, E., Vogel, S.: Strong convergence of estimators as \({ e}_n\)-minimisers of optimisation problems. Ann. Inst. Stat. Math. 57, 291–313 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lindemann, S.R., LaValle, S.M.: Simple and efficient algorithms for computing smooth, collision-free feedback laws over given cell decompositions. Int. J. Robot. Res. 28(5), 600–621 (2009)CrossRefGoogle Scholar
  17. 17.
    Luus, R. Choosing grid points in solving singular optimal control problems by iterative dynamic programming. In: Conference: Proceedings of the 10th IASTED International Conference on Intelligent Systems and Control, pp. 592–045 (2007)Google Scholar
  18. 18.
    Park, J.-M., Kim, D.-W., Yoon, Y.-S., Kim, H.J., Yi, K.-S.: Obstacle avoidance of autonomous vehicles based on model predictive control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 223(12), 1499–1516 (2009)CrossRefGoogle Scholar
  19. 19.
    Reif, U.: Uniform b-spline approximation in sobolev spaces. Numer. Algorithm. 15(1), 1–14 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rubagotti, M., Vedova, M.L.D., Ferrara, A.: Time-optimal sliding-mode control of a mobile robot in a dynamic environment. IET Control Theory Appl. 5(16), 1916–1924 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sen, P.K., Singer, J.M.: Large Sample Methods in Statistics. An Introduction with Applications. Chapman & Hall, New York-London (1993)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shiller, Z., Large, F., and Sekhavat, S.: Motion planning in dynamic environments: obstacles moving along arbitrary trajectories. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 4, pp. 3716–3721 (2001)Google Scholar
  23. 23.
    Tazir, M. L., Azouaoui, O., Hazerchi, M., and Brahimi, M.: Mobile robot path planning for complex dynamic environments. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 200–206 (2015)Google Scholar
  24. 24.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)Google Scholar
  25. 25.
    Yang, K., and Sukkarieh, S.: Real-time continuous curvature path planning of uavs in cluttered environments. In: 2008 5th International Symposium on Mechatronics and Its Applications, pp. 1–6 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adriano Zanin Zambom
    • 1
    Email author
  • Brian Seguin
    • 2
  • Feifei Zhao
    • 2
  1. 1.Department of MathematicsCalifornia State University NorthridgeNorthridgeUSA
  2. 2.Department of Mathematics and StatisticsLoyola University ChicagoChicagoUSA

Personalised recommendations