Invex optimization revisited



Given a non-convex optimization problem, we study conditions under which every Karush–Kuhn–Tucker (KKT) point is a global optimizer. This property is known as KT-invexity and allows to identify the subset of problems where an interior point method always converges to a global optimizer. In this work, we provide necessary conditions for KT-invexity in n dimensions and show that these conditions become sufficient in the two-dimensional case. As an application of our results, we study the Optimal Power Flow problem, showing that under mild assumptions on the variables’ bounds, our new necessary and sufficient conditions are met for problems with two degrees of freedom.


Convex optimization Invex optimization Boundary-invexity Optimal power flow 


\(\partial S\)

Boundary of a set S.


ith component of vector \(\mathbf {x}\).

\(f_{x_{i}}^{\prime } = \frac{\partial f}{\partial x_i}\)

Partial derivative of f with respect to \(x_i\).

\(||\mathbf {x}||\)

Euclidean norm of vector \(\mathbf {x}\).

\(\mathbf {x} \cdot \mathbf {y}\)

The dot product of vectors \(\mathbf {x}\) and \(\mathbf {y}\).

\(\mathbf {x}^T\)

The transpose of vector \(\mathbf {x}\).


A segment between points A and B.

\(2\mathbb {N}, ~2\mathbb {N}{+}1\)

The sets of even and odd numbers.

\(f'_-(x), f'_+(x)\)

Left and right derivatives of f.


The sign function.


  1. 1.
    Abbena, E., Salamon, S., Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton (2006)MATHGoogle Scholar
  2. 2.
    Antczak, T.: (p, r)-invex sets and functions. J. Math. Anal. Appl. 263(2), 355–379 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bector, C., Singh, C.: B-vex functions. J. Optim. Theory Appl. 71(2), 237–253 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Israel, A., Mond, B.: What is invexity? ANZIAM J. 28(1), 1–9 (1986)MathSciNetMATHGoogle Scholar
  5. 5.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Coffrin, C., Hijazi, H.L., Hentenryck, P.V.: The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans. Power Syst. 31(4), 3008–3018 (2016). CrossRefGoogle Scholar
  7. 7.
    Craven, B.: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24(03), 357–366 (1981)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Craven, B.: Global invexity and duality in mathematical programming. Asia-Pac. J. Oper. Res. 19(2), 169 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Craven, B., Glover, B.: Invex functions and duality. J. Austral. Math. Soc. (Ser. A) 39(01), 1–20 (1985)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hanson, M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80(2), 545–550 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jeyakumar, V., Mond, B.: On generalised convex mathematical programming. J. Austral. Math. Soc. Ser. B Appl. Math. 34(01), 43–53 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, New York (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Lehmann, K., Grastien, A., Hentenryck, P.V.: AC-feasibility on tree networks is NP-hard. IEEE Trans. Power Syst. 31(1), 798–801 (2016). CrossRefGoogle Scholar
  14. 14.
    Mangasarian, O.L.: Pseudo-convex functions. J. Soc. Ind. Appl. Math. Ser. A Control 3(2), 281–290 (1965)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Martin, D.: The essence of invexity. J. Optim. Theory Appl. 47(1), 65–76 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mendelson, B.: Introduction to Topology. Courier Corporation, New York (1990)MATHGoogle Scholar
  17. 17.
    Momoh, J., Adapa, R., El-Hawary, M.: A review of selected optimal power flow literature to 1993. i. Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999). CrossRefGoogle Scholar
  18. 18.
    Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. ii. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999). CrossRefGoogle Scholar
  19. 19.
    Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)CrossRefMATHGoogle Scholar
  20. 20.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)MATHGoogle Scholar
  21. 21.
    Norden, A.P.: Theory of Surfaces, vol. 8. Gostekhizdat, Moscow (1956). (in Russian)Google Scholar
  22. 22.
    Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7(1), 33–35 (1988)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Simmons, G.F.: Introduction to Topology and Modern Analysis. McGraw-Hill, Tokyo (1963). (The newest version was published by Krieger Publishing Company in 2003)Google Scholar
  24. 24.
    Verma, A.: Power grid security analysis: An optimization approach. Ph.D. thesis, Columbia University (2009)Google Scholar
  25. 25.
    Wang, Z., Fang, S.C., Xing, W.: On constraint qualifications: motivation, design and inter-relations. J. Ind. Manag. Optim. 9(4), 983–1001 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wrede, R.C., Spiegel, M.R.: Advanced Calculus. McGraw-Hill, New York (2010)Google Scholar
  27. 27.
    Xia, Y., Wang, S., Sheu, R.L.: S-lemma with equality and its applications. Math. Program. 156(1), 513–547 (2016). MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Australian National University, Data61, CSIROActonAustralia
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations