Advertisement

On feedback strengthening of the maximum principle for measure differential equations

  • Maxim Staritsyn
  • Stepan SorokinEmail author
Article
  • 20 Downloads

Abstract

For a class of nonlinear nonconvex impulsive control problems with states of bounded variation driven by Borel measures, we derive a new type non-local necessary optimality condition, named impulsive feedback maximum principle. This optimality condition is expressed completely within the objects of the impulsive maximum principle (IMP), while employs certain “feedback variations” of impulsive control. The obtained optimality condition is shown to, potentially, discard non-optimal IMP-extrema, and can be viewed as a deterministic non-local iterative algorithm for optimal impulsive control.

Keywords

Impulsive control Feedback control Control synthesis Maximum principle 

Notes

Acknowledgements

Authors are grateful to V.A. Dykhta for an inspiration of this study, and worthy advices.

References

  1. 1.
    Ancona, F., Bressan, A.: Patchy vector fields and asymptotic stabilization. ESAIM-COCV 4, 445–472 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arutyunov, A.V., Karamzin, DYu.: Non-degenerate necessary optimality conditions for the optimal control problem with equality-type state constraints. J. Glob. Optim. 64(4), 623–647 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arutyunov, A.V., Karamzin, DYu., Pereira, F.L.: On constrained impulsive control problems. J. Math. Sci. 165(6), 654–688 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1994)zbMATHGoogle Scholar
  5. 5.
    Barron, E.N., Jensen, R., Menaldi, J.L.: Optimal control and differential games with measures. Nonlinear Anal. 21(4), 241–268 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bressan, A.: Hyperimpulsive motions and controllizable coordinates for Lagrangean systems. Atti. Acc. Lincei End. Fis. 8(XIX), 197–246 (1989)Google Scholar
  7. 7.
    Bressan, A., Colombo, G.: Existence and continuous dependence for discontinuous O.D.E.’s. Bollettino dell’Unione Matematica Italiana IV–B, 295–311 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bressan, A., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81(3), 435–457 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bressan, A., Rampazzo, F.: On systems with quadratic impulses and their application to Lagrangean mechanics. SIAM J. Control Optim. 31, 1205–1220 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ceragioli, F.: Discontinuous Ordinary Differential Equations and Stabilization. Ph.D. Thesis, University of Florence (2000)Google Scholar
  11. 11.
    Clarke, F.H., Hiriart-Urruty, J.-B., Ledyaev, YuS: On global optimality conditions for nonlinear optimal control problems. J. Glob. Optim. 13(2), 109–122 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Clarke, F.H., Ledyaev, YuS, Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)zbMATHGoogle Scholar
  13. 13.
    Daryin, A.N., Kurzhanskii, A.B.: Closed-loop impulse control of oscillating systems. In: Proceedings of IFAC Workshop on Periodic Control Systems (PSYCO–07), Saint-Petersburg (2007)Google Scholar
  14. 14.
    Daryin, A.N., Kurzhanskii, A.B.: Control synthesis in a class of higher-order distributions. Differ. Equ. 43(11), 1479–1489 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Daryin, A.N., Kurzhanskii, A.B., Seleznev, A.V.: A dynamic programming approach to the impulse control synthesis problem. In: Proceedings of Joint 44th IEEE CDC-ECC 2005, Seville (2005)Google Scholar
  16. 16.
    Dykhta, V.A.: Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems. Autom. Remote Control 75(11), 1906–1921 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dykhta, V.A.: Positional strengthenings of the maximum principle and sufficient optimality conditions. Proc. Steklov Inst. Math. 293(1), S43–S57 (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dykhta, V.A.: Variational necessary optimality conditions with feedback descent controls for optimal control problems. Dokl. Math. 91(3), 394–396 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dykhta, V.A.: Weakly monotone solutions of the Hamilton-Jacobi inequality and optimality conditions with positional controls. Autom. Remote Control 75(5), 829–844 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dykhta, V., Samsonyuk, O.: A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Comput. Math. Math. Phys. 49(6), 942–957 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dykhta, V., Samsonyuk, O.: Optimal Impulsive Control with Applications. Fizmathlit, Moscow (2000). (in Russian)zbMATHGoogle Scholar
  22. 22.
    Filippov, A.F.: Differential equations with discontinuous right-hand sides. Trans. AMS 42, 199–231 (1964)zbMATHGoogle Scholar
  23. 23.
    Filippov, A.F.: Differential Equations with Discontinuous Right-hand Sides. Kluwer Academic Publishers, Norwell (1988)CrossRefzbMATHGoogle Scholar
  24. 24.
    Finogenko, I.A., Ponomarev, D.V.: About differential inclusions with positional explosive and impulsive controls. Proc. Inst. Math. Mech. UB RAS 19(1), 284–299 (2012)Google Scholar
  25. 25.
    Fraga, S.L., Pereira, F.L.: On the feedback control of impulsive dynamic systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 2135–2140 (2008)Google Scholar
  26. 26.
    Fraga, S.L., Pereira, F.L.: Hamilton–Jacobi–Bellman equation and feedback synthesis for impulsive control. IEEE Trans. Autom. Control 57(1), 244–249 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Goncharova, E.V., Staritsyn, M.V.: Control improvement method for impulsive systems. J. Comput. Syst. Sci. Int. 49(6), 883–890 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Goncharova, E.V., Staritsyn, M.V.: Gradient refinement methods for optimal impulse control problems Autom. Remote Control 72(10), 2188–2195 (2011)CrossRefzbMATHGoogle Scholar
  29. 29.
    Goncharova, E., Staritsyn, M.: Optimal impulsive control problem with phase and mixed constraints. Dokl. Math. 84(3), 882–885 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Goncharova, E., Staritsyn, M.: Optimization of measure-driven hybrid systems. J. Optim. Theory Appl. 153(1), 139–156 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Goncharova, E., Staritsyn, M.: Optimal control of dynamical systems with polynomial impulses. Discrete Cont. Dyn. Syst. Ser. A 35, 4367–4384 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gurman, V.: On optimal processes with unbounded derivatives. Autom. Remote Control 17, 14–21 (1972)Google Scholar
  33. 33.
    Hájek, O.: Discontinuous differential equations I, II. J. Differ. Equ. 32(149–170), 171–185 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)Google Scholar
  35. 35.
    Karamzin, D.: Necessary conditions of the minimum in an impulse optimal control problem. J. Math. Sci. 139(6), 7087–7150 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kostousov, V.B.: Struktura impulsno-skolzyaschih rezhimov pri vozmuscheniyah tipa meryi (On structure of impulsive sliding modes under disturbances of measure type), Differentsialnyie uravneniya (Differ. Eq.), Part I: 20(3), 382–391. Part II: 20(5), 645–753 (1984) (in Russian)Google Scholar
  37. 37.
    Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)CrossRefGoogle Scholar
  38. 38.
    Krotov, V.F.: Global Methods in Optimal Control Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 195. Marcel Dekker, New York (1996)Google Scholar
  39. 39.
    Kurzhanskii, A.B.: Impulse control synthesis, fast controls and hybrid system modeling. Plenary talk at ALCOSP- 07 (2007)Google Scholar
  40. 40.
    Kurzhanskii, A.B.: On synthesis of systems with impulse controls. Mechatron. Autom. Control 4, 2–12 (2006). (in Russian)Google Scholar
  41. 41.
    Kurzhanskii, A., Tochilin, P.: Impulse controls in models of hybrid systems. Differ. Equ. 45(5), 731–742 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kurzhanskii, A.B., Varaiya, P.: Impulsive inputs for feedback control and hybrid system modeling. In: Sivasundaram, S., Devi, J.V., Udwadia, F.E., Lasiecka, I. (eds.) Advances in Dynamics and Control: Theory Methods and Applications, pp. 305–326. Cambridge Scientific Publishers, Cottenham (2011)Google Scholar
  43. 43.
    Miller, B.: The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim. 34, 1420–1440 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Miller, B., Rubinovich, E.: Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic/Plenum Publishers, New York (2001)zbMATHGoogle Scholar
  45. 45.
    Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integral Equ. 8, 269–288 (1995)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Motta, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by ordinary and impulsive control. SIAM J. Control Optim. 34, 199–225 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)Google Scholar
  48. 48.
    Rishel, R.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Ind. Appl. Math. Ser. A Control 3, 191–205 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Sesekin, A.N., Nepp, A.N.: Impulse position control algorithms for nonlinear systems. In: AIP Conference Proceedings. 1690, (2015).  https://doi.org/10.1063/1.4936709
  50. 50.
    Sorokin, S.P.: Necessary feedback optimality conditions and nonstandard duality in problems of discrete system optimization. Autom. Remote Control 75(9), 1556–1564 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Sorokin, S., Staritsyn, M.: Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numer. Algebra Control Optim. 7(2), 201–210 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sorokin, S.P., Staritsyn, M.V.: Necessary optimality condition with feedback controls for nonsmooth optimal impulsive control problems. In: Proceedings of the VIII International Conference Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, 2–7 October 2017, pp. 531–538 (2017)Google Scholar
  53. 53.
    Sorokin, S.P., Staritsyn, M.V.: Numeric algorithm for optimal impulsive control based on feedback maximum principle. Optim. Lett. (2018).  https://doi.org/10.1007/s11590-018-1344-9
  54. 54.
    Strekalovsky, A.S., Yanulevich, M.V.: On global search in nonconvex optimal control problems. J. Glob. Optim. 65(1), 119–135 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Vinter, R., Pereira, F.: A maximum principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26, 205–229 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Warga, J.: Variational problems with unbounded controls. J. SIAM Control Ser. A 3(3), 424–438 (1987)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Wolenski, P.R., Zabič, S.: A sampling method and approximation results for impulsive systems. SIAM J. Control Optim. 46(3), 983–998 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zavalischin, S., Sesekin, A.: Dynamic Impulse Systems: Theory and Applications. Kluwer Academic Publishers, Dorderecht (1997)CrossRefGoogle Scholar
  59. 59.
    Zavalishchin, S.T., Sesekin, A.N.: Impulse-sliding regimes of nonlinear dynamic systems. Differ. Equ. 19(5), 562–571 (1983)zbMATHGoogle Scholar
  60. 60.
    Zavalishchin, S.T., Sesekin, A.N.: On the question of the synthesis of impulse control in the problem of optimization of dynamic systems with quadratic functional. Some methods of analytical construction of impulse regulators. Sverdlovsk. Urals Research Center USSR Academy of Sciences, pp. 3–8 (1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control TheorySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations