Advertisement

Journal of Genetic Counseling

, Volume 23, Issue 5, pp 762–769 | Cite as

The Effect of Genetic Counseling for Adult Offspring of Patients with Type 2 Diabetes on Attitudes Toward Diabetes and its Heredity: A Randomized Controlled Trial

  • M. NishigakiEmail author
  • Y. Tokunaga-Nakawatase
  • J. Nishida
  • K. Kazuma
Original Research

Abstract

The aim of this study is to investigate the effect of diabetes genetic counseling on attitudes toward diabetes and its heredity in relatives of type 2 diabetes patients. This study was an unmasked, randomized controlled trial at a medical check-up center in Japan. Subjects in this study are healthy adults between 30 and 60 years of age who have a family history of type 2 diabetes in their first degree relatives. Participants in the intervention group received a brief genetic counseling session for approximately 10 min. Genetic counseling was structured based on the Health Belief Model. Both intervention and control groups received a booklet for general diabetes prevention. Risk perception and recognition of diabetes, and attitude towards its prevention were measured at baseline, 1 week and 1 year after genetic counseling. Participants who received genetic counseling showed significantly higher recognition about their sense of control over diabetes onset than control group both at 1 week and 1 year after the session. On the other hand, anxiety about diabetes did not change significantly. The findings show that genetic counseling for diabetes at a medical check center helped adults with diabetes family history understand they are able to exert control over the onset of their disease through lifestyle modification.

Keywords

Type 2 diabetes Family history Genetic counseling Diabetes prevention 

Notes

Acknowledgments

This study was supported by a Grant-in-Aid for Young Scientists (B) 22792255 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Disclosure of Interest

We have no conflict of interest to declare. Authors have full control of all primary data and agree to allow the journal to review our data if requested.

References

  1. Anand, S. S., Meyre, D., Pare, G., Bailey, S. D., Xie, C., Zhang, X., et al. (2013). Genetic information and the prediction of incident type 2 diabetes in a high-risk multiethnic population: the EpiDREAM genetic study. Diabetes Care, 36(9), 2836–2842. doi: https://doi.org/10.2337/dc12-2553.CrossRefGoogle Scholar
  2. Arkadianos, I., Valdes, A. M., Marinos, E., Florou, A., Gill, R. D., & Grimaldi, K. A. (2007). Improved weight management using genetic information to personalize a calorie controlled diet. Nutrition Journal, 6, 29.CrossRefGoogle Scholar
  3. Bao, W., Hu, F. B., Rong, S., Rong, Y., Bowers, K., Schisterman, E. F., et al. (2013). Predicting risk of type 2 diabetes mellitus with genetic risk models on the basis of established genome-wide association markers: a systematic review. American Journal of Epidemiology. doi: https://doi.org/10.1093/aje/kwt123.CrossRefGoogle Scholar
  4. Baum, A., Friedman, A. L., & Zakowski, S. G. (1997). Stress and genetic testing for disease risk. Health Psychology, 16(1), 8–19.CrossRefGoogle Scholar
  5. Bloss, C. S., Schork, N. J., & Topol, E. J. (2011). Effect of direct-to-consumer genomewide profiling to assess disease risk. New England Journal of Medicine, 364(6), 524–534. doi: https://doi.org/10.1056/NEJMoa1011893.CrossRefGoogle Scholar
  6. Chiu, M., Austin, P. C., Manuel, D. G., Shah, B. R., & Tu, J. V. (2011). Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care, 34(8), 1741–1748. doi: https://doi.org/10.2337/dc10-2300.CrossRefGoogle Scholar
  7. Dagogo-Jack, S. (2012). Predicting diabetes: our relentless quest for genomic nuggets. Diabetes Care, 35(2), 193–195. doi: https://doi.org/10.2337/dc11-2106.CrossRefGoogle Scholar
  8. Grant, R. W., Moore, A. F., & Florez, J. C. (2009). Genetic architecture of type 2 diabetes: recent progress and clinical implications. Diabetes Care, 32(6), 1107–1114.CrossRefGoogle Scholar
  9. Gutierrez, J., & Long, J. A. (2011). Reliability and validity of diabetes specific Health Beliefs Model scales in patients with diabetes and serious mental illness. Diabetes Research and Clinical Practice, 92(3), 342–347. doi: https://doi.org/10.1016/j.diabres.2011.02.018.CrossRefGoogle Scholar
  10. Hariri, S., Yoon, P. W., Moonesinghe, R., Valdez, R., & Khoury, M. J. (2006a). Evaluation of family history as a risk factor and screening tool for detecting undiagnosed diabetes in a nationally representative survey population. Genetics in Medicine, 8(12), 752–759.CrossRefGoogle Scholar
  11. Hariri, S., Yoon, P. W., Qureshi, N., Valdez, R., Scheuner, M. T., & Khoury, M. J. (2006b). Family history of type 2 diabetes: a population-based screening tool for prevention? Genetics in Medicine, 8(2), 102–108.CrossRefGoogle Scholar
  12. Harrison, T. A., Hindorff, L. A., Kim, H., Wines, R. C. M., Bowen, D. J., McGrath, B. B., et al. (2003). Family history of diabetes as a potential public health tool. American Journal of Preventive Medicine, 24(2), 152–159.CrossRefGoogle Scholar
  13. Khoury, M. J., Valdez, R., & Albright, A. (2008). Public health genomics approach to type 2 diabetes. Diabetes, 57(11), 2911–2914.CrossRefGoogle Scholar
  14. Kuzuya, T., & Matsuda, A. (1982). Family histories of diabetes among Japanese patients with type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes. Diabetologia, 22(5), 372–374.CrossRefGoogle Scholar
  15. Leventhal, H., Weinman, J., Leventhal, E. A., & Phillips, L. A. (2008). Health psychology: the search for pathways between behavior and health. Annual Review of Psychology, 59, 477–505.CrossRefGoogle Scholar
  16. Markowitz, S. M., Park, E. R., Delahanty, L. M., O’Brien, K. E., & Grant, R. W. (2011). Perceived impact of diabetes genetic risk testing among patients at high phenotypic risk for type 2 diabetes. Diabetes Care, 34(3), 568–573. doi: https://doi.org/10.2337/dc10-1960.CrossRefGoogle Scholar
  17. Muhlenbruch, K., Jeppesen, C., Joost, H. G., Boeing, H., & Schulze, M. B. (2013). The value of genetic information for diabetes risk prediction—differences according to sex, age, family history and obesity. PLoS One, 8(5), e64307. doi: https://doi.org/10.1371/journal.pone.0064307.CrossRefGoogle Scholar
  18. Nishigaki, M., Kobayashi, K., Hitomi, T., Yokomura, T., Yokoyama, M., Seki, N., et al. (2007). Perception of offspring risk for type 2 diabetes, among patients with type 2 diabetes and their adult offsprings. Diabetes Care, 30(12), 3033–3034.CrossRefGoogle Scholar
  19. Nishigaki, M., Sato, E., Ochiai, R., Shibayama, T., & Kazuma, K. (2011). Impact of a booklet about diabetes genetic susceptibility and its prevention on attitudes towards prevention and perceived behavioral change in patients with type 2 diabetes and their offspring. Advances in Preventive Medicine, 2011, 7 pages. doi: https://doi.org/10.4061/2011/365132.CrossRefGoogle Scholar
  20. Nishigaki, M., Tokunaga-Nakawatase, Y., Nishida, J., Taru, C., Miyawaki, I., Sanada, H., et al. (2012). Randomized controlled trial of the effectiveness of genetic counseling and a distance, computer-based, lifestyle intervention program for adult offspring of patients with type 2 diabetes: background, study protocol, and baseline patient characteristics. Journal of Nutrition and Metabolism, 831735. doi: https://doi.org/10.1155/2012/831735.CrossRefGoogle Scholar
  21. Pierce, M., Ridout, D., Harding, D., Keen, H., & Bradley, C. (2000). More good than harm: a randomised controlled trial of the effect of education about familial risk of diabetes on psychological outcomes. British Journal of General Practice, 50(460), 867–871.Google Scholar
  22. Pijl, M., Timmermans, D. R. M., Claassen, L., Janssens, A. C. J. W., Nijpels, G., Dekker, J. M., et al. (2009). Impact of communicating familial risk of diabetes on illness perceptions and self-reported behavioral outcomes: a randomized controlled trial. Diabetes Care, 32(4), 597–599. doi: https://doi.org/10.2337/dc08-1049.CrossRefGoogle Scholar
  23. Rosenstock, I. M. (1966). Why people use health services. Milbank Memorial Fund Quarterly, 44(3), 94–127.CrossRefGoogle Scholar
  24. Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (1988). Social learning theory and the Health Belief Model. Health Education Quarterly, 15(2), 175–183.CrossRefGoogle Scholar
  25. Stolerman, E. S., & Florez, J. C. (2009). Genomics of type 2 diabetes mellitus: implications for the clinician. Nature Reviews Endocrinology, 5(8), 429–436.CrossRefGoogle Scholar
  26. Valdez, R., Yoon, P. W., Liu, T., & Khoury, M. J. (2007). Family history and prevalence of diabetes in the U.S. population: the 6-year results from the National Health and Nutrition Examination Survey (1999–2004). Diabetes Care, 30(10), 2517–2522.CrossRefGoogle Scholar
  27. Vassy, J. L., & Meigs, J. B. (2012). Is genetic testing useful to predict type 2 diabetes? Best Practice & Research Clinical Endocrinology & Metabolism, 26(2), 189–201. doi: https://doi.org/10.1016/j.beem.2011.09.002.CrossRefGoogle Scholar
  28. Vassy, J. L., Shrader, P., Jonsson, A., Fox, C. S., Lyssenko, V., Isomaa, B., et al. (2011). Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Research and Clinical Practice, 93(2), e76–79. doi: https://doi.org/10.1016/j.diabres.2011.04.013.CrossRefGoogle Scholar
  29. Vorderstrasse, A. A., Cho, A., Voils, C. I., Orlando, L. A., & Ginsburg, G. S. (2013). Clinical utility of genetic risk testing in primary care: the example of type 2 diabetes. Personalized Medicine, 10(6), 549–563. doi: https://doi.org/10.2217/pme.13.47.CrossRefGoogle Scholar
  30. Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311–321. doi: https://doi.org/10.1016/j.diabres.2011.10.029.CrossRefGoogle Scholar

Copyright information

© National Society of Genetic Counselors, Inc. 2014

Authors and Affiliations

  • M. Nishigaki
    • 1
    Email author
  • Y. Tokunaga-Nakawatase
    • 1
  • J. Nishida
    • 2
  • K. Kazuma
    • 1
  1. 1.The Graduate School of Medicine, School of Health Sciences and Nursing, Department of Adult NursingThe University of TokyoBunkyo-kuJapan
  2. 2.Social Insurance Chuo General HospitalTokyoJapan

Personalised recommendations