Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of New Flexible Coumarin Dimers for Sodium and Potassium Differentiation

  • 53 Accesses

Abstract

Using fluorescence to detect biologically relevant metals has been studied extensively due to its rapid and low detection limit ability. Sodium and potassium differentiation is significant in diagnosis of many medical conditions. For this, we designed coumarin dimers as flexible fluorescent probes using ethylene glycol units for differentiation of sodium and potassium. To our best knowledge, use of these easy-to-synthesize coumarin dimers linked through ethylene glycol units are first in the literature. In fluorescence titration experiments, diethylene glycol linked coumarin-3-carboxylate dimer is responsive for sodium ions but not for potassium ions. The driving force for the complexation of metal cation and fluorescence probes is thought to be size-matching. To further explain the phenomenon, we synthesized coumarin dimer using 1,8- octanediol as the linker, and methyl ester of coumarin-3-carboxylic acid to investigate the effect of structural changes on the fluorescence intensity. These two compounds could not differentiate the sodium and potassium. Flexible coumarin dimers as fluorophores are shown to be useful for sensing sodium cation in the presence of potassium cation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028

  2. 2.

    Sareen D, Kaur P, Singh K (2014) Coord Chem Rev 265:125–154

  3. 3.

    Valeur B (2000) Coord Chem Rev 205:3–40

  4. 4.

    Tumambac GE, Wolf C (2005) Enantioselective analysis of an asymmetric reaction using a chiral fluorosensor. Org Lett 7:4045–4048

  5. 5.

    Formica M, Fusi V, Giorgi L, Micheloni M (2012) Coord Chem Rev 256:170–192

  6. 6.

    Jeong Y, Yoon J (2012) Inorganica Chim Acta. 381:2–14

  7. 7.

    Yin J, Hu Y, Yoon J (2015) Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem Soc Rev 44:4619–4644

  8. 8.

    Sahana S, Bharadwaj PK (2014) Inorganica Chim Acta 417:109–141

  9. 9.

    Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

  10. 10.

    Schwarze T, Müller H, Schmidt D, Riemer J, Holdt H-J (2017) Chem - A Eur J 23:7255–7263

  11. 11.

    Yamada K, Nomura Y, Citterio D, Iwasawa N, Suzuki K (2005) Highly sodium-selective fluoroionophore based on conformational restriction of oligoethyleneglycol-bridged biaryl boron-dipyrromethene. J Am Chem Soc 127:6956–6957

  12. 12.

    Hellgren M, Sandberg L, Edholm O (2006) A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study. Biophys Chem 120:1–9

  13. 13.

    Nagy IZ (1981) Intracellular Na+:K+ ratios in human cancer cells as revealed by energy dispersive x-ray microanalysis. J Cell Biol 90:769–777

  14. 14.

    Perez V, Chang ET (2014) Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr 5:712–741

  15. 15.

    Sigel A, Sigel H, Sigel RKO, Eds. (2016) The Alkali Metal Ions: Their Role for Life, Springer International Publishing: Cham, vol. 16

  16. 16.

    Iwahori T, Miura K, Ueshima H (2017) Nutrients. 9:700

  17. 17.

    Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

  18. 18.

    Nijegorodov NI, Downey WS (1994) J Phys Chem 98:5639–5643

  19. 19.

    Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

  20. 20.

    Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

  21. 21.

    Xu X, Xu H, Ji H (2001) Chem Commun 20:2092–2093

  22. 22.

    McFarland SA, Finney NS (2001) Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. J Am Chem Soc 123:1260–1261

  23. 23.

    McFarland SA, Finney NS (2002) Fluorescent signaling based on control of excited state dynamics. Biarylacetylene fluorescent chemosensors. J Am Chem Soc 124:1178–1179

  24. 24.

    Donovalová J, Cigáň M, Stankovičová H, Gašpar J, Danko M, Gáplovský A, Hrdlovič P (2012) Spectral properties of substituted coumarins in solution and polymer matrices. Molecules. 17:3259–3276

  25. 25.

    Zhang H, Yu T, Zhao Y, Fan D, Qian L, Yang C, Zhang K (2007) Spectrochim Acta Part A Mol Biomol Spectrosc 68:725–727

  26. 26.

    Lei L, Xue Y, Liu Z, Peng S, He Y, Zhang Y, Fang R, Wang J, Luo Z, Yao G, Zhang J, Zhang G, Song H (2015) Zhang Y. Sci Rep 5:13544

  27. 27.

    Dingels C, Frey H (2013) From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with predetermined breaking points. Adv Polym Sci 262:167–190

  28. 28.

    Ozcelik B, Brown KD, Blencowe A, Ladewig K, Stevens GW, Scheerlinck J-PY, Abberton K, Daniell M, Qiao GG (2014) Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Healthc Mater 3:1496–1507

  29. 29.

    Hamilton GRC, Sahoo SK, Kamila S, Singh N, Kaur N, Hyland BW, Callan JF (2015) Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chem Soc Rev 44:4415–4432

  30. 30.

    Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707

  31. 31.

    Jurek K, Kabatc J, Kostrzewska K, Grabowska M (2015) New fluorescence probes for biomolecules. Molecules. 20:13071–13079

  32. 32.

    Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016

Download references

Acknowledgements

We would like to thank METU Chemistry Department and Middle East Technical University (BAP-07-02 2017-004-137).

Author information

Correspondence to Akin Akdag.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1554 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Akdag, A. Synthesis of New Flexible Coumarin Dimers for Sodium and Potassium Differentiation. J Fluoresc 30, 27–34 (2020). https://doi.org/10.1007/s10895-020-02492-4

Download citation

Keywords

  • Coumarin dimers
  • Sodium and potasium sensing
  • Flexible dimers