Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Triazatruxene–Rhodamine-Based Ratiometric Fluorescent Chemosensor for the Sensitive, Rapid Detection of Trivalent Metal Ions: Aluminium (III), Iron (III) and Chromium (III)

  • 81 Accesses


We investigated the ability of a novel triazatruxene–rhodamine-based (TAT-ROD) chemosensor to detect the trivalent metal ions aluminium (Al3+), iron (Fe3+) and chromium (Cr3+). Operating via the through-bond energy transfer (TBET) pathway, the chemosensor exhibited low detection limits of 23.0, 25.0 and 170.0 nM for Al3+, Fe3+ and Cr3+, respectively, along with high sensitivity and selectivity during a brief period (<15 s). The binding ratio of the chemosensor and trivalent metal ions achieved by Job’s method was 3:1, and when we added ethylenediaminetetraacetic acid (EDTA), the sensing process reversed. Altogether, our TAT-ROD chemosensor marks the first triazatruxene-based colorimetric and fluorometric metal ion sensor reported in the literature.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Flaten TP, Ødegård M (1988) Tea, aluminium and Alzheimer’s disease. Food Chem Toxicol 26:959–960. https://doi.org/10.1016/0278-6915(88)90095-6

  2. 2.

    Rogers MA, Simon DG (1999) A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age Ageing 28:205–209. https://doi.org/10.1093/ageing/28.2.205

  3. 3.

    Gunsé B, Garzón T, Barceló J (2003) Study of aluminum toxicity by means of vital staining profiles in four cultivars ofPhaseolus vulgaris L. J Plant Physiol 160:1447–1450. https://doi.org/10.1078/0176-1617-01001

  4. 4.

    Gupta VK, Shoora SK, Kumawat LK, Jain AK (2015) A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions. Sensors Actuators B Chem 209:15–24. https://doi.org/10.1016/j.snb.2014.10.143

  5. 5.

    Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent Chemosensors based on Spiroring-opening of Xanthenes and related derivatives. Chem Rev 112:1910–1956. https://doi.org/10.1021/cr200201z

  6. 6.

    Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137:3335–3342. https://doi.org/10.1039/C2AN35258C

  7. 7.

    Bonda DJ, Lee H-g, Blair JA, Zhu X, Perry G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270. https://doi.org/10.1039/C0MT00074D

  8. 8.

    Erdemir S, Kocyigit O (2016) Anthracene excimer-based “turn on” fluorescent sensor for Cr3+ and Fe3+ ions: its application to living cells. Talanta 158:63–69. https://doi.org/10.1016/j.talanta.2016.05.017

  9. 9.

    Lo Presti M, El Sayed S, Martínez-Máñez R, Costero AM, Gil S, Parra M, Sancenón F (2016) Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New J Chem 40:9042–9045. https://doi.org/10.1039/C6NJ01957A

  10. 10.

    von Haehling S, Anker SD (2014) Eisenmangel bei chronischer Herzinsuffizienz: Von der diagnose zur Therapie (Iron deficiency in chronic heart failure: from diagnosis to therapy). Dtsch Med Wochenschr 139:841–844. https://doi.org/10.1055/s-0034-1369988

  11. 11.

    Gupta VK, Jain AK, Agarwal S, Maheshwari G (2007) An iron(III) ion-selective sensor based on a μ-bis(tridentate) ligand. Talanta 71:1964–1968. https://doi.org/10.1016/j.talanta.2006.08.038

  12. 12.

    Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2000) A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. Evidence for the guanine N-7-chromium-phosphate chelate formation. J Biol Chem 275:10150–10153. https://doi.org/10.1074/jbc.275.14.10150

  13. 13.

    Mertz W, Schwarz K (1955) Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration. Arch Biochem Biophys 58:504–506. https://doi.org/10.1016/0003-9861(55)90151-X

  14. 14.

    Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178. https://doi.org/10.1016/j.aca.2006.11.074

  15. 15.

    Dey S, Sarkar S, Maity D, Roy P (2017) Rhodamine based chemosensor for trivalent cations: synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates. Sensors Actuators B Chem 246:518–534. https://doi.org/10.1016/j.snb.2017.02.094

  16. 16.

    Kilic H, Bozkurt E (2018) A rhodamine-based novel turn on trivalent ions sensor. J Photochem Photobiol A Chem 363:23–30. https://doi.org/10.1016/j.jphotochem.2018.05.024

  17. 17.

    Wang H, Kang T, Wang X, Feng L (2018) Design and synthesis of a novel tripod rhodamine derivative for trivalent metal ions detection. Sensors Actuators B Chem 264:391–397. https://doi.org/10.1016/j.snb.2018.03.003

  18. 18.

    Wang J, Li Y, Patel NG, Zhang G, Zhou D, Pang Y (2014) A single molecular probe for multi-analyte (Cr3+, Al3+ and Fe3+) detection in aqueous medium and its biological application. Chem Commun 50:12258–12261. https://doi.org/10.1039/C4CC04731A

  19. 19.

    Chen X, Shen XY, Guan E, Liu Y, Qin A, Sun JZ, Tang BZ (2013) A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. Chem Commun (Camb) 49:1503–1505. https://doi.org/10.1039/c2cc38246f

  20. 20.

    Chereddy NR, Nagaraju P, Niladri Raju MV, Krishnaswamy VR, Korrapati PS, Bangal PR, Rao VJ (2015) A novel FRET ‘off–on’ fluorescent probe for the selective detection of Fe3+, Al3+ and Cr3+ ions: its ultrafast energy transfer kinetics and application in live cell imaging. Biosens Bioelectron 68:749–756. https://doi.org/10.1016/j.bios.2015.01.074

  21. 21.

    Chereddy NR, Raju MVN, Reddy BM, Krishnaswamy VR, Korrapati PS, Reddy BJM, Rao VJ (2016) A TBET based BODIPY-rhodamine dyad for the ratiometric detection of trivalent metal ions and its application in live cell imaging. Sensors Actuators B Chem 237:605–612. https://doi.org/10.1016/j.snb.2016.06.131

  22. 22.

    Goswami S, Aich K, Das AK, Manna A, Das S (2013) A naphthalimide–quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions. RSC Adv 3:2412–2416. https://doi.org/10.1039/C2RA22624C

  23. 23.

    Santos-Figueroa LE, Llopis-Lorente A, Royo S, Sancenón F, Martínez-Máñez R, Costero AM, Gil S, Parra M (2015) A Chalcone-based highly selective and sensitive Chromofluorogenic probe for trivalent metal Cations. ChemPlusChem 80:800–804. https://doi.org/10.1002/cplu.201500042

  24. 24.

    Gallego-Gómez F, García-Frutos EM, Villalvilla JM, Quintana JA, Gutierrez-Puebla E, Monge A, Díaz-García MA, Gómez-Lor B (2011) Very large photoconduction enhancement upon self-assembly of a new Triindole derivative in solution-processed films. Adv Funct Mater 21:738–745. https://doi.org/10.1002/adfm.201000956

  25. 25.

    García-Frutos EM, Coya C, Gutierrez E, Monge A, Ad A, Gómez-Lor B (2010) New triindole-based organic semiconductors: structure-property relationships. Org Electron 7778:8. https://doi.org/10.1117/12.860553

  26. 26.

    García-Frutos EM, Gómez-Lor B, Monge Á, Gutiérrez-Puebla E, Alkorta I, Elguero J (2008) Synthesis and preferred all-syn conformation of C3-symmetrical N-(hetero)arylmethyl Triindoles. Chem Eur J 14:8555–8561. https://doi.org/10.1002/chem.200800911

  27. 27.

    Lai W-Y, He Q-Y, Zhu R, Chen Q-Q, Huang W (2008) Kinked star-shaped Fluorene/ Triazatruxene co-oligomer hybrids with enhanced functional properties for high-performance, solution-processed, blue organic light-emitting diodes. Adv Funct Mater 18:265–276. https://doi.org/10.1002/adfm.200700224

  28. 28.

    Lai W-Y, Zhu R, Fan Q-L, Hou L-T, Cao Y, Huang W (2006) Monodisperse six-armed Triazatruxenes: microwave-enhanced synthesis and highly efficient pure-deep-blue electroluminescence. Macromolecules 39:3707–3709. https://doi.org/10.1021/ma060154k

  29. 29.

    Franceschin M, Ginnari-Satriani L, Alvino A, Ortaggi G, Bianco A (2010) Study of a convenient method for the preparation of Hydrosoluble fluorescent Triazatruxene derivatives. Eur J Org Chem 2010:134–141. https://doi.org/10.1002/ejoc.200900869

  30. 30.

    Ginnari-Satriani L, Casagrande V, Bianco A, Ortaggi G, Franceschin M (2009) A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Org Biomol Chem 7:2513–2516. https://doi.org/10.1039/B904723A

  31. 31.

    Xie Y-F, Ding S-Y, Liu J-M, Wang W, Zheng Q-Y (2015) Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J Mater Chem C 3:10066–10069. https://doi.org/10.1039/C5TC02256H

  32. 32.

    Xu Y, Wu X, Chen Y, Hang H, Tong H, Wang L (2016) Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Adv 6:31915–31918. https://doi.org/10.1039/C6RA04553G

  33. 33.

    Wang K-R, An H-W, Han D, Qian F, Li X-L (2013) Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin. Chin Chem Lett 24:467–470. https://doi.org/10.1016/j.cclet.2013.03.032

  34. 34.

    Wang K-R, Wang Y-Q, An H-W, Zhang J-C, Li X-L (2013) A Triazatruxene-based Glycocluster as a fluorescent sensor for Concanavalin A. Chem Eur J 19:2903–2909. https://doi.org/10.1002/chem.201200905

  35. 35.

    Sadak AE, Gören AC, Bozdemir ÖA, Saraçoğlu N (2017) Synthesis of novel meso-Indole- and meso-Triazatruxene-BODIPY dyes. ChemistrySelect 2:10512–10516. https://doi.org/10.1002/slct.201701897

  36. 36.

    Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent Chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387. https://doi.org/10.1021/ja971221g

Download references


The authors gratefully acknowledge TUBİTAK-UME for financial support and thank to Muhiddin CERGEL and İlker ÜN for NMR analysis and Gökhan BİLSEL for HRMS analysis.

Author information

Correspondence to Ali Enis Sadak or Erman Karakuş.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1152 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadak, A.E., Karakuş, E. Triazatruxene–Rhodamine-Based Ratiometric Fluorescent Chemosensor for the Sensitive, Rapid Detection of Trivalent Metal Ions: Aluminium (III), Iron (III) and Chromium (III). J Fluoresc 30, 213–220 (2020). https://doi.org/10.1007/s10895-020-02491-5

Download citation


  • Triazatruxene
  • Rhodamine
  • TBET
  • Trivalent metal ions
  • Ratiometric sensor