Advertisement

Combustion Synthesis of ZnO/ZnS Nanocomposite Phosphors

  • Majid Zahiri
  • Mahdi Shafiee AfaraniEmail author
  • Amir Masoud ArabiEmail author
ORIGINAL ARTICLE
  • 11 Downloads

Abstract

In the present study, combustion synthesis of zinc oxide and zinc sulfide nanoparticles as well as their composite was studied using zinc nitrate and thioacetamide as starting materials, and ethylene glycol as fuel. The influence of different parameters such as oxidizer to fuel (O:F) ratios and calcination process on the structure, microstructure, photoluminescence and optical properties was studied. X-ray diffraction (XRD) patterns showed different combinations of wurtzite structure for zinc oxide and zinc sulfide phases obtained using different O:F ratios of 1:1 and 2:3. Scanning electron microscopy (SEM) micrographs revealed that particles with different morphologies were synthesized depending on the O:F ratio. Besides, nanometer particles, or even quantum dots, could be obtained. Transmission electron microscopy (TEM) micrographs also showed the formation of zinc oxide/ zinc sulfide quantum dots composite using ethylene glycol fuel with O:F ratio of 2:3. Fourier transformed infrared (FTIR) analysis of samples showed carbon bonds of carbonaceous matters in addition to Zn-O and Zn-S bonds due to incomplete combustion. Photoluminescent emission spectra indicated that the highest intensity of emission in blue-green region was obtained from the particle synthesized using ethylene glycol and O:F ratio of 2:3, which may be related to the high density of lattice defects. Band gaps estimated using UV-visible (UV-Vis) spectra were 3.4 and 5.4 eV which can be assigned to the dual nature of particles: in some parts quantum size and in the other parts nanosize particles.

Keywords

Solution combustion synthesis ZnO/ZnS nanocomposite Photoluminescence properties Band gap Oxidizer to fuel ratios 

Notes

References

  1. 1.
    Ben Nasr T, Kamoun N, Guasch C (2008) Physical properties of ZnS thin films prepared by chemical bath deposition. Appl Surf Sci 254:5039–5043CrossRefGoogle Scholar
  2. 2.
    M. Sánchez-Agudo, I. Génova, H. Orr, G. Harris and G. Pérez, 2008Google Scholar
  3. 3.
    Chen ZG, Cheng L, Xu HY, Liu JZ, Zou J, Sekiguchi T, Lu GQ, Cheng HM (2010) ZnS Branched Architectures as Optoelectronic Devices and Field Emitters. Adv Mater 22:2376–2380PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ruedas-Rama MJ, Orte A, Hall EA, Alvarez-Pez JM, Talavera EM (2011) Quantum dot photoluminescence lifetime-based pH nanosensor. Chem Commun 47:2898–2900CrossRefGoogle Scholar
  5. 5.
    Barkhouse DAR, Haight R, Sakai N, Hiroi H, Sugimoto H, Mitzi DB (2012) Cd-free buffer layer materials on Cu2ZnSn(SxSe1−x)4: Band alignments with ZnO, ZnS, and In2S3. Appl Phys Lett 100:193904CrossRefGoogle Scholar
  6. 6.
    Naeimi A, Arabi AM, Shafiee Afarani M, Gardeshzadeh AR (2014) J Mater Sci Mater Electron 25:1575–1582CrossRefGoogle Scholar
  7. 7.
    Akbari M, Sharifnia S (2017) Synthesis of ZnS/ZnO nanocomposite through solution combustion method for high rate photocatalytic conversion of CO 2 and CH 4. Mater Lett 194:110–113CrossRefGoogle Scholar
  8. 8.
    Naeimi A, Arabi AM, Shafiee Afarani M, Gardeshzadeh AR (2015) J Mater Sci Mater Electron 26:1403–1412CrossRefGoogle Scholar
  9. 9.
    Gawai U, Khawal H, Shripathi T, Dole B (2016) A study on the synthesis, pair distribution function and diverse properties of cobalt doped ZnS nanowires. CrystEngComm 18:1439–1445CrossRefGoogle Scholar
  10. 10.
    Rasouli S, Arabi A-M, Naeimi A, Hashemi S-M (2018) Microwave-Assisted Combustion Synthesis of ZnO:Eu Nanoparticles: Effect of Fuel Types. J Fluoresc 28:167–172PubMedCrossRefGoogle Scholar
  11. 11.
    Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: From synthesis to applications. Prog Mater Sci 56:175–287CrossRefGoogle Scholar
  12. 12.
    Esmaeili F, Ghahari M, Shafiee Afarani M, Soleimani A (2018) Synthesis of ZnS–Mn nano-luminescent pigment for ink applications. J Coat Technol Res 15:1325–1332CrossRefGoogle Scholar
  13. 13.
    Bredol M, Merikhi J (1998) J Mater Sci 33:471–476CrossRefGoogle Scholar
  14. 14.
    Edalati K, Shakiba A, Vahdati-Khaki J, Zebarjad SM (2016) Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers. Mater Res Bull 74:374–379CrossRefGoogle Scholar
  15. 15.
    Zhao J, Zhang H (2012) Hydrothermal synthesis and characterization of ZnS hierarchical microspheres. Superlattice Microst 51:663–667CrossRefGoogle Scholar
  16. 16.
    Reddy AJ, Kokila M, Nagabhushana H, Chakradhar R, Shivakumara C, Rao J, Nagabhushana B (2011) Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. J Alloys Compd 509:5349–5355CrossRefGoogle Scholar
  17. 17.
    Tarwal N, Jadhav P, Vanalakar S, Kalagi S, Pawar R, Shaikh J, Mali S, Dalavi D (2011) P. Shinde and P. Patil. Powder Technol 208:185–188CrossRefGoogle Scholar
  18. 18.
    Sharifitabar M, Vahdati Khaki J, Sabzevar MH (2014) Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2–Al–C system. Int J Refract Met Hard Mater 47:93–101CrossRefGoogle Scholar
  19. 19.
    Zarezadeh Mehrizi M, Mostaan H, Beygi R, Rafiei M, Abbasian AR (2018) Reaction Pathways of Nanocomposite Synthesized in-situ from Mechanical Activated Al–C–TiO2 Powder Mixture. Russian Journal of Non-Ferrous Metals 59:117–122CrossRefGoogle Scholar
  20. 20.
    Tohidlou E, Ganjkhanlou Y, Kazemzad M, Afarani MS (2010) Physica Status Solidi C 7:2663–2666CrossRefGoogle Scholar
  21. 21.
    Ma Q, Wang Z, Jia H, Wang Y (2016) J Mater Sci Mater Electron 27:10282–10288CrossRefGoogle Scholar
  22. 22.
    Shahmirzaee M, Afarani MS, Arabi AM, Nejhad AI (2017) In situ crystallization of ZnAl2O4/ZnO nanocomposite on alumina granule for photocatalytic purification of wastewater. Res Chem Intermed 43:321–340CrossRefGoogle Scholar
  23. 23.
    Rasouli S, Moeen SJ (2011) Combustion synthesis of Co-doped zinc oxide nanoparticles using mixture of citric acid–glycine fuels. J Alloys Compd 509:1915–1919CrossRefGoogle Scholar
  24. 24.
    Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opinion Solid State Mater Sci 12:44–50CrossRefGoogle Scholar
  25. 25.
    Won C, Nersisyan H, Won H, Jeon D, Han J (2010) Combustion synthesis and photoluminescence of ZnS:Mn+2 particles. J Lumin 130:1026–1031CrossRefGoogle Scholar
  26. 26.
    M. Shahmirzaee, M. Shafiee Afarani, A. Iran Nejhad and A. M. Arabi, Particulate Science and Technology, 2017, 1–8Google Scholar
  27. 27.
    Lagashetty A, Havanoor V, Basavaraja S, Balaji S, Venkataraman A (2007) Microwave-assisted route for synthesis of nanosized metal oxides. Sci Technol Adv Mater 8:484–493CrossRefGoogle Scholar
  28. 28.
    Zahiri M, Afarani MS, Arabi AM (2018) Dual functions of thiourea for solution combustion synthesis of ZnO/ZnS composite powders: fuel and sulphur source. Applied Physics A 124:663CrossRefGoogle Scholar
  29. 29.
    Gruy F, Mekki-Berrada MK, Cournil M (2009) AICHE J 55:2553–2562CrossRefGoogle Scholar
  30. 30.
    Tauc J, Menth A (1972) J Non-Cryst Solids 8:569–585CrossRefGoogle Scholar
  31. 31.
    R. O. Kagel and R. A. Nyquist, Infrared spectra of inorganic compounds (3800–45 cm−1), 1971Google Scholar
  32. 32.
    Hosseini SA, Davodian M, Abbasian AR (2017) Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides. J Taiwan Inst Chem Eng 75:97–104CrossRefGoogle Scholar
  33. 33.
    Hosseini SA, Majidi V, Abbasian AR (2018) Photocatalytic desulfurization of dibenzothiophene by NiCo2O4nanospinel obtained by an oxidative precipitation process modeling and optimization. Journal of Sulfur Chemistry 39:119–129CrossRefGoogle Scholar
  34. 34.
    Khosravi H, Eslami-Farsani R (2016) Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+-montmorillonite nanoclay. Polym Test 55:135–142CrossRefGoogle Scholar
  35. 35.
    Khosravi H, Eslami-Farsani R (2016) On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes–enhanced matrix. J Reinf Plast Compos 35:421–434CrossRefGoogle Scholar
  36. 36.
    J. G. Omran, M. Sharifitabar and M. S. Afarani, Ceramics international, 2018Google Scholar
  37. 37.
    Chang J, Ahmad MZ, Wlodarski W, Waclawik ER (2013) Self-Assembled 3D ZnO Porous Structures with Exposed Reactive {0001} Facets and Their Enhanced Gas Sensitivity. Sensors 13:8445–8460PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    F. Xiu, J. Xu, P. C. Joshi, C. A. Bridges and M. Parans Paranthaman, in Semiconductor Materials for Solar Photovoltaic Cells, eds. M. P. Paranthaman, W. Wong-Ng and R. N. Bhattacharya, Springer International Publishing, Cham, 2016,  https://doi.org/10.1007/978-3-319-20331-7_4, pp. 105–140Google Scholar
  39. 39.
    Das S, Dutta K, Pramanik A (2013) Morphology control of ZnO with citrate: a time and concentration dependent mechanistic insight. CrystEngComm 15:6349–6358CrossRefGoogle Scholar
  40. 40.
    Rasouli S, Valefi M, Moeen SJ, Arabi AM (2011) J Ceram Process Res 12:450–455Google Scholar
  41. 41.
    Chae K-W, Zhang Q, Kim JS, Jeong Y-H, Cao G (2010) Beilstein Journal of Nanotechnology 1:128PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Abdi A, Eslami-Farsani R, Khosravi H (2018) Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-modified CaCO3 Nanoparticles. Fibers and Polymers 19:635–640CrossRefGoogle Scholar
  43. 43.
    Srinatha N, Dinesh Kumar V, Nair KGM, Angadi B (2015) The effect of fuel and fuel-oxidizer combinations on ZnO nanoparticles synthesized by solution combustion technique. Adv Powder Technol 26:1355–1363CrossRefGoogle Scholar
  44. 44.
    Rodnyi P, Khodyuk I (2011) Optical and luminescence properties of zinc oxide (Review). Opt Spectrosc 111:776–785CrossRefGoogle Scholar
  45. 45.
    Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv Funct Mater 20:561–572CrossRefGoogle Scholar
  46. 46.
    Ji J, Colosimo A, Anwand W, Boatner L, Wagner A, Stepanov P, Trinh T, Liedke M, Krause-Rehberg R, Cowan T (2016) Scientific reports 6:31238PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Z. O. F. F. P. T. N. Applications, Claus F. Klingshirn, Andreas Waag, Axel Hoffmann, Jean Geurts, Springer-Verlag Berlin Heidelberg, 2010Google Scholar
  48. 48.
    Gao X, Wang J, Yu J, Xu H (2015) Novel ZnO–ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties. CrystEngComm 17:6328–6337CrossRefGoogle Scholar
  49. 49.
    Vempati S, Mitra J, Dawson P (2012) Nanoscale Research Letters 7:470PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Krishna Reddy G, Jagannatha Reddy A, Hari Krishna R, Nagabhushana BM, Gopal GR (2017) Luminescence and spectroscopic investigations on Gd3+doped ZnO nanophosphor. Journal of Asian Ceramic Societies 5:350–356CrossRefGoogle Scholar
  51. 51.
    Lin K-F, Cheng H-M, Hsu H-C, Lin L-J, Hsieh W-F (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett 409:208–211CrossRefGoogle Scholar
  52. 52.
    Debanath M, Karmakar S (2013) Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater Lett 111:116–119CrossRefGoogle Scholar
  53. 53.
    Köseoğlu Y (2014) A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets. Ceram Int 40:4673–4679CrossRefGoogle Scholar
  54. 54.
    Sakthivel P, Muthukumaran S, Ashokkumar M (2015) J Mater Sci Mater Electron 26:1533–1542CrossRefGoogle Scholar
  55. 55.
    Vogel D, Krüger P, Pollmann J (1995) Ab initioelectronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials. Phys Rev B 52:R14316CrossRefGoogle Scholar
  56. 56.
    Zwicker G, Jacobi K (1985) Experimental band structure of ZnO. Solid State Commun 54:701–704CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Faculty of EngineeringUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of Inorganic Pigments and GlazesInstitute for Color Science and Technology (ICST)TehranIran

Personalised recommendations