Advertisement

An Experimental and Theoretical Test of Dielectric Friction Models Using Rotational Diffusion of 7-Diethylamino-2-H-1-Benzopyran-2-One in Non-associative Solvents

  • Anil Kumar
  • C. G. Renuka
  • Y. F. NadafEmail author
ORIGINAL ARTICLE
  • 27 Downloads

Abstract

The rotational re-orientations times of the 7-DHB dye molecule have been examined in non-associative solvents (DMSO and Octanenitrile) by varying the temperature, by employing the Steady-State Fluorescence Depolarisation and Time-Correlated Single Photon Counting (TCSPC) techniques. Rotational re-orientations time values in DMSO are found larger by a factor of 1.136 than octanenitrile, which indicates that 7-DHB laser dye is experiencing higher friction in DMSO than octanenitrile. To determine mechanical friction Stokes Einstein’s Debye theory (SED) -with a stick, slip boundary conditions parameters are used and found an interesting super slip trend. Point dipole models as Nee-Zwanzig (NZ) and van der Zwan-Hynes (ZH) fail to explain experimental dielectric friction observed trends. Alavi-Waldeck model successfully explains the observed dielectric friction trend in non-associative solvents.

Keywords

Diffusion Molecular correlation Non-associative solvents Dielectric theories Charge distribution 

Notes

References

  1. 1.
    Mali KS, Dutt GB, Mukherjee T (2008) Rotational diffusion of a nonpolar and a dipolar solute in 1-butyl-3-methylimidazolium hexafluorophosphate and glycerol: interplay of size effects and specific interactions. J Chem Phys 128:054504–1-054504-9.  https://doi.org/10.1063/1.2827473 CrossRefGoogle Scholar
  2. 2.
    Tao T (1969) Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers. 8:609–632CrossRefGoogle Scholar
  3. 3.
    Einstein A (1956) Investigations in Theory of Brownian Motion. Dover, New YorkGoogle Scholar
  4. 4.
    Kubinyi M, Grofcsik A, Pápai I, Jones WJ (2003) Rotational reorientation dynamics of nile blue a and oxazine 720 in protic solvents. Chem Phys 286:81–96.  https://doi.org/10.1016/S0301-0104(02)00908-4 CrossRefGoogle Scholar
  5. 5.
    Zhou P, Song P, Liu J, Shi Y, Han K, He G (2008) Rotational reorientation dynamics of oxazine 750 in polar solvents. J Phys Chem A 112:3646–3655.  https://doi.org/10.1021/jp7120998 CrossRefGoogle Scholar
  6. 6.
    Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM (2006) Rotational diffusion and solvatochromic correlation of coumarin 6 laser dye. J Fluoresc 16:847–854.  https://doi.org/10.1007/s10895-006-0126-4 CrossRefGoogle Scholar
  7. 7.
    Gangamallaiah V, Dutt GB (2012) Rotational diffusion of nonpolar and ionic solutes in 1-Alkyl-3- methylimidazolium bis (trifluoromethylsulfonyl) imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation? J Phys Chem B 116:12819–12825.  https://doi.org/10.1021/jp307959z CrossRefGoogle Scholar
  8. 8.
    Prabhu SR, Dutt GB (2014) Rotational diffusion of nonpolar and charged solutes in propylammonium nitrate-propylene glycol mixtures: does the organized structure of the ionic liquid influence solute rotation? J Phys Chem B 118:2738–2745.  https://doi.org/10.1021/jp501343k CrossRefGoogle Scholar
  9. 9.
    Prabhu SR, Dutt GB (2014) Rotational diffusion of nondipolar and charged solutes in alkyl-substituted imidazolium triflimides: effect of C2 methylation on solute rotation. J Phys Chem B 118:9420–9426.  https://doi.org/10.1021/jp5055155 CrossRefGoogle Scholar
  10. 10.
    Nadaf YF, Renuka CG, Raikar US (2013) Temperature-dependent reorientation dynamics of laser dyes in alkane and alcohol solvents. Can J Phys 91:677–681CrossRefGoogle Scholar
  11. 11.
    Anirban Sharma, Pradip Kr. Ghorai (2018) Effect of alcohols on the structure and dynamics of [BMIM][PF6] ionic liquid: a combined molecular dynamics simulation and Voronoi tessellation investigation. J Chem Phys 148: 204514–1–204514–11.  https://doi.org/10.1063/1.5008439
  12. 12.
    Nadaf YF, Renuka CG (2015) Analysis of rotational diffusion of coumarin laser dyes. Can J Phys 93:3–6CrossRefGoogle Scholar
  13. 13.
    Dutt GB, Ghanty TK (2004) Rotational dynamics of nondipolar probes in butanols: correlation of reorientation times with solute-solvent interaction strengths. J Phys Chem A 108:6090–6095.  https://doi.org/10.1021/jp048601q CrossRefGoogle Scholar
  14. 14.
    Hay CE, Marken F, Blanchard GJ (2010) Solvent-dependent changes in molecular reorientation dynamics: the role of solvent-solvent interactions. J Phys Chem A 114:4957–4962.  https://doi.org/10.1021/jp912217r CrossRefGoogle Scholar
  15. 15.
    Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents. J Phys Chem B 111:7291–7302.  https://doi.org/10.1021/jp070923h CrossRefGoogle Scholar
  16. 16.
    Kumar PV, Maroncelli M (2000) The non-separability of dielectric and mechanical friction in molecular systems: a simulation study. J Chem Phys 112(12):5370–5381.  https://doi.org/10.1063/1.481107 CrossRefGoogle Scholar
  17. 17.
    Prabhu SR, Dutt GB (2015) Rotational diffusion of charged and nondipolar solutes in ionic liquid-organic solvent mixtures: evidence for stronger specific solute-solvent interactions in presence of organic solvent. J Phys Chem B 119:10720–10726.  https://doi.org/10.1021/acs.jpcb.5b06297 CrossRefGoogle Scholar
  18. 18.
    Dutt GB (2005) Molecular rotation as a tool for exploring specific solute-solvent interactions. Chem Phys Chem 6:413–418.  https://doi.org/10.1002/cphc.200400337 CrossRefGoogle Scholar
  19. 19.
    Guo J, Han KS, Mahurin SM, Baker GA, Hillesheim PC, Dai S, Hagaman EW, Shaw RW (2012) Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: a combined time-resolved fluorescence anisotropy decay and NMR study. J Phys Chem B 116:7883–7890CrossRefGoogle Scholar
  20. 20.
    Tiwari AK, Sonu SSK (2014) Effect of hydroxyl group substituted spacer group of cationic gemini surfactants on solvation dynamics and rotational relaxation of coumarin-480 in aqueous micelles. J Phys Chem B 118:3582–3592.  https://doi.org/10.1021/jp4069703 CrossRefGoogle Scholar
  21. 21.
    Nee TW, Zwanzig R (1970) Theory of dielectric relaxation in polar liquids. J Chem Phys 52:6353–6363.  https://doi.org/10.1063/1.1672951 CrossRefGoogle Scholar
  22. 22.
    Hu C, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354–4357CrossRefGoogle Scholar
  23. 23.
    Madden P, Kivelson D (1982) Dielectric friction and molecular reorientation. J Phys Chem 86:4244–4256.  https://doi.org/10.1021/j100218a031 CrossRefGoogle Scholar
  24. 24.
    Van Der Zwan G, Hynes JT (1985) Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents. J Phys Chem 89:4181–4188.  https://doi.org/10.1021/j100266a008 CrossRefGoogle Scholar
  25. 25.
    Ben-Amotz D, Drake JM (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029.  https://doi.org/10.1063/1.455253 CrossRefGoogle Scholar
  26. 26.
    Simon JD, Thompson PA (1990) Spectroscopy and rotational dynamics of oxazine 725 in alcohols: a test of dielectric friction theories. J Chem Phys 92:2891–2896.  https://doi.org/10.1063/1.457936 CrossRefGoogle Scholar
  27. 27.
    Alavi DS, Hartman RS, Waldeck DH (1991) A test of continuum models for dielectric friction. Rotational diffusion of phenoxazine dyes in dimethylsulfoxide. J Chem Phys 94:4509–4520.  https://doi.org/10.1063/1.460606 CrossRefGoogle Scholar
  28. 28.
    Goudar R, Gupta R, Kulkarni GU, Inamdar SR (2015) Rotational diffusion of a new large non polar dye molecule in alkanes. J Fluoresc 25:1671–1679.  https://doi.org/10.1007/s10895-015-1654-6 CrossRefGoogle Scholar
  29. 29.
    Horng ML, Gardecki JA, Maroncelli M (1997) Rotational dynamics of coumarin 153: time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047.  https://doi.org/10.1021/jp962921v CrossRefGoogle Scholar
  30. 30.
    Maroncelli M (1997) Continuum estimates of rotational dielectric friction and polar solvation. J Chem Phys 106:1545–1555.  https://doi.org/10.1063/1.473276 CrossRefGoogle Scholar
  31. 31.
    Dutt GB, Raman S (2001) Rotational dynamics of coumarins: an experimental test of dielectric friction theories. J Chem Phys 114:6702–6713.  https://doi.org/10.1063/1.1357797 CrossRefGoogle Scholar
  32. 32.
    Mannekutla JR, Inamdar SR, Mulimani BG, Savadatti MI (2010) Rotational diffusion of Coumarins: a dielectric friction study. J Fluoresc 20:797–808.  https://doi.org/10.1007/s10895-010-0606-4 CrossRefGoogle Scholar
  33. 33.
    Inamdar SR, Mannekutla JR, Mulimani BG, Savadatti MI (2006) Rotational dynamics of nonpolar laser dyes. Chem Phys Lett 429:141–146.  https://doi.org/10.1016/j.cplett.2006.08.020 CrossRefGoogle Scholar
  34. 34.
    Hughes RM, Mutzenhardt P, Bartolotti L, Rodriguez AA (2008) Experimental and theoretical analysis of the reorientational dynamics of fullerene C70 in various aromatic solvents. J Phys Chem A 112:4186–4193.  https://doi.org/10.1021/jp800027j CrossRefGoogle Scholar
  35. 35.
    Gayathri BR, Mannekutla JR, Inamdar SR (2008) Rotational diffusion of coumarins in alcohols: a dielectric friction study. J Fluoresc 18:943–952CrossRefGoogle Scholar
  36. 36.
    Dutt GB, Rama Krishna G (2001) Rotational dynamics of coumarins in nonassociative solvents: point dipole versus extended charge distribution models of dielectric friction. J Chem Phys 115:4732–4740CrossRefGoogle Scholar
  37. 37.
    Lackowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkCrossRefGoogle Scholar
  38. 38.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  39. 39.
    Renuka CG, Shivashankar K, Boregowda P, Bellad SS, Muregendrappa MV, Nadaf YF (2017) An experimental and computational study of 2-(3-Oxo3H-benzo[f] chromen-1-ylmethoxy)-benzoic acid methyl Ester. J Solut Chem 46:1535–1555.  https://doi.org/10.1007/s10953-017-0661-4 CrossRefGoogle Scholar
  40. 40.
    Renuka CG, Nadaf YF, Sriprakash G, Rajendra Prasad S (2018) Solvent dependence on structure and electronic properties of 7-(Diethylamino) – 2H -1- Benzopyran −2- one (C-466) laser dye. J Fluoresc 28:839–854.  https://doi.org/10.1007/s10895-018-2249-9 CrossRefGoogle Scholar
  41. 41.
    Edward JT (1970) Molecular volumes and the stokes-Einstein equation. J Chem Educ 47:261–270.  https://doi.org/10.1021/ed047p2613/1.1680910 CrossRefGoogle Scholar
  42. 42.
    Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, LondonGoogle Scholar
  43. 43.
    Small EW, Isenberg I (1977) Hydrodynamic properties of a rigid macromolecule: rotational and linear diffusion and fluorescence anisotropy. Biopolymers 16:1907–1928CrossRefGoogle Scholar
  44. 44.
    Sension RJ, Hochstrasser RM (1993) Comment on: rotational friction coefficients for ellipsoids and chemical molecules with slip boundary conditions. J Chem Phys 98:2490CrossRefGoogle Scholar
  45. 45.
    Gierer VA, Wirtz K (1953) Molecular theory of microreiberation. Z. Naturforschg 8A:532-Google Scholar
  46. 46.
    Bagchi B, Jana B (2010) Solvation dynamics in dipolar liquids. Chem Soc Rev 39:1936–1954.  https://doi.org/10.1039/b902048a CrossRefGoogle Scholar
  47. 47.
    Das SK, Majhi D, Sahu PK, Sarkar M (2015) Investigation of the influence of alkyl side chain length on the fluorescence response of C153 in a series of room temperature ionic liquids. RSC Adv 5:41585–41594.  https://doi.org/10.1039/C4RA16864J CrossRefGoogle Scholar
  48. 48.
    Rosenthal SJ, Jimenez et al (1994). Solvation dynamics in methanol: Experimental and molecular dynamics simulation studies. J Mol Liq 60:25–56.  https://doi.org/10.1016/0167-7322(94)00738-1
  49. 49.
    Simon JD (1988) Time-resolved studies of solvation in polar media. Acc Chem Res 21:128–134.  https://doi.org/10.1021/ar00147a006 CrossRefGoogle Scholar
  50. 50.
    Yevheniia S, François-Alexandre M et al (2017) Solvation dynamics and rotation of coumarin 153 in a new ionic liquid/molecular solvent mixture model: [BMIM][TFSI]/propylenecarbonate. J Mol Liq 226:48–55.  https://doi.org/10.1016/j.molliq.2016.10.00 CrossRefGoogle Scholar
  51. 51.
    Zhang XX, Liang M, Ernsting NP, Maroncelli M (2013) Complete solvation response of coumarin 153 in ionic liquids. J Phys Chem B 117:4291–4304.  https://doi.org/10.1021/jp305430a CrossRefGoogle Scholar
  52. 52.
    Dutta GB, Rama Krishna G (2001) Rotational dynamics of coumarins in nonassociative solvents: point dipole versus extended charge distribution models of dielectric friction. J Chem Phys 115:4732–4741.  https://doi.org/10.1063/1.1395563 CrossRefGoogle Scholar
  53. 53.
    Dutt GB (2000) Rotational dynamics of non-dipolar probes in alkane–alkanol mixtures: microscopic friction on hydrogen bonding and non-hydrogen bonding solute molecules. J Chem Phys 113:11154–11158CrossRefGoogle Scholar
  54. 54.
    Alavi DS, Waldeck DH (1991) Rotational dielectric friction on a generalized charge distribution. J Chem Phys 94:6197–6202Google Scholar
  55. 55.
    Hartman RS, Waldeck DH (1994) Rotational diffusion of fluorenes in Dimethyl Sulfoxide. J Phys Chem 98:1386–1393CrossRefGoogle Scholar
  56. 56.
    Hartman RS, Waldeck DH (1991) An experimental test of dielectric friction models using the diffusion of aminoanthraquinones. J Phys Chem 95:7872–7880CrossRefGoogle Scholar
  57. 57.
    Kurnikova MG, Waldeck DH, Coalson RD (1996) A molecular dynamic study of dielectric friction. J Chem Phys 105:628–638CrossRefGoogle Scholar
  58. 58.
    Panwang Z, Jianyon L, Peng S, Heli K, Guozhing H (2009) Rotational reorientation dynamics of rhodamine 700 in different excited states. J Lumin 129:283–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P.G. Department of PhysicsSri Siddeshwara Government First Grade CollegeNaragundIndia
  2. 2.Department of PhysicsJnanabharathi campus, Bangalore UniversityBengaluruIndia
  3. 3.Department of Physics and Research CenterMaharani Science College for WomenBengaluruIndia

Personalised recommendations