Advertisement

Chlorine (Cl) - Substituted Carbazole Based A-π-D-π-a Push-Pull Chromophores as Aggregation Enhanced Emission (AEE) Active Viscosity Sensors: Synthesis, DFT and NLO Approach

  • Prerana K. M. Lokhande
  • Dinesh S. Patil
  • Mayuri Kadam
  • Nagaiyan SekarEmail author
ORIGINAL ARTICLE
  • 48 Downloads

Abstract

Three new carbazole functionalized A-π-D-π-A extended chromophores 4a, 4b and 4c comprising of different chemical functional groups on C=C bond with the assistance of chlorovinylene group in π-conjugation are synthesized and investigated spectroscopically. We have investigated the effect of different electron acceptors - carboxycyanomethylene, dicyanomethylene and 2-(benzothiazol-2-yl) cyanomethylene, the effect of the insertion of chlorine in π-conjugation on photophysical properties and the effect of double acceptors. The chromophores 4a, 4b and 4c exhibited positive solvatochromism with large Stokes shifts and bright orange to red solid-state fluorescence. Amongst all the three compounds 4c exhibited maximum emission wavelength at 615 nm in DMSO. They presented characteristic twisted intramolecular charge transfer (TICT) emission. Observations exhibited that 4c containing long hexyl group in donor unit and 2-(benzothiazol-2-yl) cyanomethylene as an acceptor group formed an aggregate in the mixture of solvents and exhibited better aggregation enhanced emission (AEE) compared to the other two derivatives. Amongst the three styryls, 4c showed the highest emission intensity 299 a.u. at 90% water:DMF fraction (fw). Chromophores 4a-4c also exhibited good fluorescence response towards viscosity. Among the three fluorescent molecular rotors (FMR), 4c exhibited excellent viscosity sensitivity with x value = 0.687. The Non-linear (NLO) characters are estimated with the help of solvatochromic and computational methods using the functionals, B3LYP and CAM-B3LYP. The dyes showed large “linear polarizability (αCT)”, “first order hyperpolarizability” (β) and “second order hyperpolarizability” (γ) values which show that synthesized styryls can be used as a “NLO” material. The αCT, β and γ for 4c are found to be the maximum amongst the all three dyes which can be ascribed to the smaller band gap apparent from experimental as well as DFT method.

Keywords

Extended styryl Solvatochromism AEE FMR DFT NLO 

Notes

Acknowledgments

The author, Prerana Kumar Lokhande is thankful to University Grants Commission (Greentech), New Delhi (India) for the award of Junior and Senior Research fellowships.

Compliance with Ethical Standards

Conflict of Interest

There are no conflicts to declare.

Supplementary material

10895_2019_2396_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1317 kb)

References

  1. 1.
    Brunner K, van Dijken A, B€orner H, Bastiaansen JJ, Kiggen NMM, Langeveld BMW (2004) J Am Chem Soc 126:6035–6042CrossRefGoogle Scholar
  2. 2.
    Chu H-C, Sahu D, Hsu Y-C, Padhy H, Patra D, Lin J-T (2012) Structural planarity and conjugation effects of novel symmetrical acceptor–donor–acceptor organic sensitizers on dye-sensitized solar cells. Dyes Pigments 93:1488–1497CrossRefGoogle Scholar
  3. 3.
    Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H (2008) Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J Org Chem 73:3791–3797CrossRefGoogle Scholar
  4. 4.
    Yoon KR, Ko S-O, Lee SM, Lee H (2007) Synthesis and characterization of carbazole derived nonlinear optical dyes. Dyes Pigments 75:567–573CrossRefGoogle Scholar
  5. 5.
    Pacansky J, Waltman RJ (1992) X-ray photoelectron and optical absorption spectroscopic studies on the dye chlorodiane blue, used as a carrier generation molecule in organic photoconductors. J Am Chem Soc 114:5813–5839CrossRefGoogle Scholar
  6. 6.
    Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A (2010) High-Efficiency Förster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells. Nano Lett 10:2387–2394CrossRefGoogle Scholar
  7. 7.
    Yang Z, Zhao N, Sun Y, Miao F, Liu Y, Liu X (2012) Highly selective red- and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem CommunCamb 48:3442–3444CrossRefGoogle Scholar
  8. 8.
    Meerholz K, Volodin BL, Sandalphon N, Kippelen K, Peyghambarian N (1994) A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371:497–500CrossRefGoogle Scholar
  9. 9.
    Cox AM, Blackburn RD, West DP, King TA, Wade FA, Leigh DA (1996) Crystallization‐resistant photorefractive polymer composite with high diffraction efficiency and reproducibility. Appl Phys Lett 68:2801–2803CrossRefGoogle Scholar
  10. 10.
    Gupta VD, Padalkar VS, Phatangare KR, Patil VS, Umape PG, Sekar N (2011) The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dyes Pigments 88:378–384CrossRefGoogle Scholar
  11. 11.
    Gupta VD, Tathe AB, Padalkar VS, Umape PG, Sekar N (2013) Red emitting solid state fluorescent triphenylamine dyes: Synthesis, photo-physical property and DFT study. Dyes Pigments 97:429–439CrossRefGoogle Scholar
  12. 12.
    Law KY (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93:449–486CrossRefGoogle Scholar
  13. 13.
    Yang MJ, Tsutsui T (2000) Jpn J Appl Phys 39:1828Google Scholar
  14. 14.
    Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun:1740–1741Google Scholar
  15. 15.
    Yang Z, Qin W, Lam JWY, Chen S, Sung HHY, Williams ID, Tang BZ (2013) Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. Chem Sci 4:3725CrossRefGoogle Scholar
  16. 16.
    Roy S, Stollberg P, Herbst-Irmer R, Stalke D, Andrada DM, Frenking G, Roesky HW (2015) Carbene-Dichlorosilylene Stabilized Phosphinidenes Exhibiting Strong Intramolecular Charge Transfer Transition. J Am Chem Soc 137:150–153CrossRefGoogle Scholar
  17. 17.
    Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  18. 18.
    Sharma S, Dhir A, Pradeep CP (2014) ESIPT induced AIEE active material for recognition of 2-thiobarbituric acid. Sens Actuators B Chem 191:445–449CrossRefGoogle Scholar
  19. 19.
    An BK, Kwon SK, Jung SD, Park SY (2002) Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J.Am.Chem.Soc. 124:14410–14415CrossRefGoogle Scholar
  20. 20.
    Hu R, Lager E, Aguilar Aguilar A, Liu J, Lam JWY, Sung HHY, Williams ID, Zhong Y, Wong KS, Peña-Cabrera E, Tang BZ (2009) Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. J Phys Chem C 113:15845–15853CrossRefGoogle Scholar
  21. 21.
    Liu Y, Tao X, Wang F, Shi J, Sun J, Yu W, Ren Y, Zou D, Jiang M (2007) J Phys Chem C111:6544Google Scholar
  22. 22.
    Wu QY, Peng Q, Niu YL, Gao X, Shuai ZG (2012) Theoretical Insights into the Aggregation-Induced Emission by Hydrogen Bonding: A QM/MM Study. J.Phys.Chem. A116 116:3881–3888CrossRefGoogle Scholar
  23. 23.
    Xiao S, Zou Y, Wu J, Zhou Y, Yi T, Li F, Huang CJ (2007) Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state. Mater.Chem. 17:2483CrossRefGoogle Scholar
  24. 24.
    Zhou T, Li F, Fan Y, Song W, Mu X, Zhang H, Wang Y (2009) Hydrogen-bonded dimer stacking induced emission of aminobenzoic acid compounds. Chem.Commun.:3199–3201Google Scholar
  25. 25.
    Deligeorgiev T, Vasilev A (2010) Chemistry F. ColorTechnol:55–80Google Scholar
  26. 26.
    Tokar VP, Losytskyy MY, Ohulchanskyy TY (2010) Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells. J Fluoresc 20:865–872CrossRefGoogle Scholar
  27. 27.
    Wandelt B, Mielniczak A, Turkewitsch P, Darling GD, Stranix BRS (2003) Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity. BiosensBioelectron 18:465–471CrossRefGoogle Scholar
  28. 28.
    Ismail L (2012) Photophysical properties of a surfactive long-chain styryl merocyanine dye as fluorescent probe. F MJ Lumin 132:2512–2520CrossRefGoogle Scholar
  29. 29.
    Horiguchi E, Kitaguchi T, Matsui M (2006) Substituent effects of 2,3-dicyano-5-[4-(diethylamino)styryl]-7-methyl-6H-1,4-diazepines on their use as red dopants in single-layer organic electroluminescence devices. Dyes Pigments 70:43–47CrossRefGoogle Scholar
  30. 30.
    Rodrigues CAB, Mariz IFA, Maçoas EMS, Afonso CAM, Martinho JMG (2012) Two-photon absorption properties of push–pull oxazolones derivatives. Dyes Pigments 95:713–722CrossRefGoogle Scholar
  31. 31.
    Chan CYK, Lam JWY, Zhao Z, Chen S, Lu P, Sung HHY (2014) Aggregation-induced emission, mechanochromism and blue electroluminescence of carbazole and triphenylamine-substituted ethenes. J Mater Chem C 2:4320–4327CrossRefGoogle Scholar
  32. 32.
    Carda-Moreno I, Costela A, Mantin V, Pintado-Sierra M, Sastre R (2009) Materials for a Reliable Solid-State Dye Laser at the Red Spectral Edge. Adv Funct Mater 19:2547–254752CrossRefGoogle Scholar
  33. 33.
    Patel DG, Bastianon NM, Tongwa P, Leger JM, Timofeeva TV, Bartholomew GP (2011) Modification of nonlinear optical dyes for dye sensitized solar cells: a new use for a familiar acceptor. J Mater Chem 21:4242CrossRefGoogle Scholar
  34. 34.
    Slama-Schwok MB-DA, Lehn J-M (1990) Intramolecular charge transfer in donor-acceptor molecules. J Phys Chem 94:3894–3902CrossRefGoogle Scholar
  35. 35.
    Han F, Zhang R, Zhang Z, Su J, Ni Z (2016) A new TICT and AIE-active tetraphenylethene-based Schiff base with reversible piezofluorochromism. RSC Adv 6:68178–68184CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Wang J-H, Zheng J, Li D (2015) A Br-substituted phenanthroimidazole derivative with aggregation induced emission from intermolecular halogen–hydrogen interactions. Chem Commun 51:6350–6353CrossRefGoogle Scholar
  37. 37.
    Dalton LR, Benight SJ, Johnson LE, Knorr DB, Kosilkin I, Eichinger BE (2011) Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials†. Chem Mater 23:430–445CrossRefGoogle Scholar
  38. 38.
    Lupo D (1995) Molecular nonlinear optics: materials, physics, and devices. Edited by J. Zyss, academic press, San Diego. CA 1994, XIII, 478 pp., hardcover, ISBN 0-12- 784450-3. Adv Mater 7:248–249CrossRefGoogle Scholar
  39. 39.
    Dalton LR, Sullivan PA, Bale DH (2010) Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects. Chem Rev 110:25–25CrossRefGoogle Scholar
  40. 40.
    Cole JM (2003) Organic materials for second-harmonic generation: advances in relating structure to function. Trans Roy Soc A: Math Phys Eng Sci 361:2751–2770CrossRefGoogle Scholar
  41. 41.
    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242CrossRefGoogle Scholar
  42. 42.
    S.R. Forrest. M.E (2007) Introduction: Organic Electronics and Optoelectronics. Chem Rev 107:923–925CrossRefGoogle Scholar
  43. 43.
    Thomas KRJ, Lin JT, Tao Y-T, Ko C-W (2000) Novel Green Light-Emitting Carbazole Derivatives: Potential Electroluminescent Materials. Adv Mater 12:1949–1951CrossRefGoogle Scholar
  44. 44.
    Ciorba S, Galiazzo G, Mazzucato U, Spalletti A (2010) Photobehavior of the Geometrical Isomers of Two 1,4-Distyrylbenzene Analogues with Side Groups of Different Electron Donor/Acceptor Character. J Phys Chem A 114:10761–10768CrossRefGoogle Scholar
  45. 45.
    Sagara Y, Kato T (2009) Nat Chem 1:1605CrossRefGoogle Scholar
  46. 46.
    Sagara Y, Kato T (2011) Angew Chem 123:9294CrossRefGoogle Scholar
  47. 47.
    Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Yamaguchi YS aS (2013) Distinct Responses to Mechanical Grinding and Hydrostatic Pressure in Luminescent Chromism of Tetrathiazolylthiophene. J Am Chem Soc 135:10322–10325CrossRefGoogle Scholar
  48. 48.
    Kumbhar HS, Deshpande SS, Shankarling GS (2016) Chemistry Select 1:2058–2064Google Scholar
  49. 49.
    Thorat KG, Kamble P, Mallah R, Ray AK, Sekar N (2015) Congeners of Pyrromethene-567 Dye: Perspectives from Synthesis, Photophysics, Photostability, Laser, and TD-DFT Theory. J Org Chem 80:6152–6164CrossRefGoogle Scholar
  50. 50.
    Thorat KG, Bhakhoa H, Ramasami P, Sekar N (2015) NIR-Emitting Boradiazaindacene Fluorophores -TD-DFT Studies on Electronic Structure and Photophysical Properties. J Fluoresc 25:69–78CrossRefGoogle Scholar
  51. 51.
    Shen J, Snook RD (1989) Thermal lens measurement of absolute quantum yields using quenched fluorescent samples as references. Chem Phys Lett 155:583–586CrossRefGoogle Scholar
  52. 52.
    Ooyama Y, Nagano T, Inoue S, Imae I, Komaguchi K, Ohshita J, Harima Y (2011) Dye-Sensitized Solar Cells Based on Donor-π-Acceptor Fluorescent Dyes with a Pyridine Ring as an Electron-Withdrawing-Injecting Anchoring Group. Chem-Eur J 17:14837–14843CrossRefGoogle Scholar
  53. 53.
    Zhao J, Yang X, Cheng M, Li S, Sun L (2013) Molecular Design and Performance of Hydroxylpyridium Sensitizers for Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 5:5227–5231CrossRefGoogle Scholar
  54. 54.
    Sacconi L (1966) Tetrahedral complexes of nickel(II) and copper(II) with schiff bases. Coord Chem Rev 1:126–132CrossRefGoogle Scholar
  55. 55.
    Yamada S (1966) Recent aspects of the stereochemistry of schiff-base-metal complexes. Coord Chem Rev 1:415–437CrossRefGoogle Scholar
  56. 56.
    Mehrotra C, Srivastva G, Saraswat BS (1982) Rev Silicon, Germanium, Tin, Lead Compd 6:171Google Scholar
  57. 57.
    Nath M, Goyal S (1995) Main Group Met Chem 19:75Google Scholar
  58. 58.
    Siddiqui HL, Iqbal A, Ahmad S, Weaver GW (2006) Synthesis and Spectroscopic Studies of New Schiff Bases. Molecules 11:206–211CrossRefGoogle Scholar
  59. 59.
    G.E.M.J.F.G.W.T. H. B. Schlegel, G.A.S.M.A.R.J.R.C.G.S.V.B. B. Mennucci, J.P.H.N.M.C.X.L.H.P.H. A. F. Izmaylov, J.B.G.Z.J.L.S.M.H.M.E.K.T. R. Fukuda, J.A.H.M.I.T.N.Y.H.O.K.H.N. T. Vreven, K.N.M.J.J.E.P.F.O.M.B.J.J.H. E. Brothers, J.K.V.N.S.R.K.J.N.K.R. A. Rendell, J.E.C.B.S.S.I.J.T.M.C.N.R.J.M.M. M. Klene, R.E.S.K.J.B.C.V.B.C.A.J.J. R. Gomperts, K.O.Y.A.J.A.R.C.C.P.J.W.O. R. L. Martin, S.M.V.G.Z.G.A.V.P.S. J. J. Dannenberg, and D.D.A.D.D.O.F.J.B.F.J.V.O. J. Cioslowski, W.C.J.F.G. Inc., Gaussian 09, Revision A.1, (n.d.)Google Scholar
  60. 60.
    Gao BR, Wang HY, Hao YW, Fu LM, Fang HH, Jiang Y, Wang L, Chen QD, Xia H, Pan LY, Ma YG, Sun HB (2010) Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State. J Phys Chem B 114:128–134CrossRefGoogle Scholar
  61. 61.
    Al-Sabtl KEA (1983) M J Phys Chem 87:446CrossRefGoogle Scholar
  62. 62.
    Lai C-T, Hong J-L (2010) Aggregation-Induced Emission in Tetraphenylthiophene-Derived Organic Molecules and Vinyl Polymer. J Phys Chem B 114:10302–10310CrossRefGoogle Scholar
  63. 63.
    Chen M, Li L, Nie H, Tong J, Yan L, Xu B, Sun JZ, Tian W, Zhao Z, Qin A, Tang BZ (2015) Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem Sci 6:1932–1937CrossRefGoogle Scholar
  64. 64.
    Bruni S, Cariati E, Cariati F, Porta FA, Quici S, Roberto D (2001) Determination of the quadratic hyperpolarizability of trans-4-[4-(dimethylamino)styryl]pyridine and 5-dimethylamino-1,10-phenanthroline from solvatochromism of absorption and fluorescence spectra: a comparison with the electric-field-induced second-harmonic generation technique. Spectrochim Acta Part A Mol BiomolSpectrosc 57:1417–1426CrossRefGoogle Scholar
  65. 65.
    Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A (2002) Quadratic Nonlinear Optical Properties ofN-Aryl Stilbazolium Dyes. Adv Funct Mater 12:110–116CrossRefGoogle Scholar
  66. 66.
    Kawski A (2002) Zeitschrift Fur Naturforsch - Sect A. J Phys Sci 57:255–262Google Scholar
  67. 67.
    Chamma A, Viallet PCR (1970) Acad Sci Paris Ser C 270:1901–1904Google Scholar
  68. 68.
    Kawski A (1964) Dipolmomenteeiniger Naphtholeim Grundund Anregungszust and. Naturwissenschaften. 51:82–83CrossRefGoogle Scholar
  69. 69.
    Rettig W (1986) Ladungstrennung in angeregten Zuständen entkoppelter Systeme – TICT-Verbindungen und Implikationen für die Entwicklung neuer Laserfarbstoffe sowie für den Primärprozeß von Sehvorgang und Photosynthese. AngewChem. 98:969–986CrossRefGoogle Scholar
  70. 70.
    Valeur B (2001) Related titles from WILEY-VCH analytical atomic spectrometry with flames and plasmas handbook of analytical techniques single-molecule detection in solution. Methods and Applications 8Google Scholar
  71. 71.
    McRae EG (1954) J Phys Chem 6:1957Google Scholar
  72. 72.
    Eisenthal KB, Rieckhoff KE (1971) Polarizability of Molecules in Excited Electronic States. J Chem Phys 55:3317–3327CrossRefGoogle Scholar
  73. 73.
    Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A (2002) Quadratic Nonlinear Optical Properties ofN-Aryl Stilbazolium Dyes. Adv Funct Mater 12:110–116CrossRefGoogle Scholar
  74. 74.
    Beens H, Knibbe H, Weller A (1967) Dipolar nature of molecular complexes formedin the excited state. J Chem Phys 47:1183–1184CrossRefGoogle Scholar
  75. 75.
    Zheng J, Kang YK, Therien MJ, Beratan DN (2005) Generalized Mulliken−Hush Analysis of Electronic Coupling Interactions in Compressed π-Stacked Porphyrin−Bridge−Quinone Systems. J Am Chem Soc 127:11303–11310CrossRefGoogle Scholar
  76. 76.
    Zheng J, Kang YK, Therien MJ, Beratan DN (2005) Generalized Mulliken−Hush Analysis of Electronic Coupling Interactions in Compressed π-Stacked Porphyrin−Bridge−Quinone Systems. J Am Chem Soc 127:11303–11310CrossRefGoogle Scholar
  77. 77.
    Kadam MML, Patil DS, Sekar N (2019) Red emitting coumarin based 4, 6-disubstituted-3-cyano-2-pyridones dyes – Synthesis, solvatochromism, linear and non-linear optical properties. J Mol Liq 276:385–398CrossRefGoogle Scholar
  78. 78.
    Li J, Zhang Y, Mei J, Lam JWY, Hao J, Tang BZ (2015) Aggregation-Induced Emission Rotors: Rational Design and Tunable Stimuli Response. Chem - A Eur J 21:907–914CrossRefGoogle Scholar
  79. 79.
    Zhao Z, Lam JWY, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22:23726CrossRefGoogle Scholar
  80. 80.
    Alam MJ, Ahmad S (2012) Anharmonic vibrational studies of l-aspartic acid using HF and DFT calculations. Spectrochim Acta - Part A Mol Biomol Spectrosc 96:992–1004CrossRefGoogle Scholar
  81. 81.
    Uludağ N, Serdaroğlu G, Yinanc A (2018) A novel synthesis of octahydropyrido[3,2- ]carbazole framework of aspidospermidine alkaloids and a combined computational, FT-IR, NMR, NBO, NLO, FMO, MEP study of the cis-4a-Ethyl-1-(2hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole. J Mol Struct 1161:152–168CrossRefGoogle Scholar
  82. 82.
    Thul P, Gupta VP, Ram VJ (2010) Structural and spectroscopic studies on 2-pyranones. P Tandon Spectrochim Acta - Part A Mol Biomol Spectrosc 75:251–260CrossRefGoogle Scholar
  83. 83.
    Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82:6723–6726CrossRefGoogle Scholar
  84. 84.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity Index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  85. 85.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1:104–113CrossRefGoogle Scholar
  86. 86.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  87. 87.
    Rezende MC, Dominguez M, Aracena A, Millán D (2011) Solvatochromism and electrophilicity. Chem Phys Lett 514:267–273CrossRefGoogle Scholar
  88. 88.
    Pearson RG (1985) Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc 107:6801–6806CrossRefGoogle Scholar
  89. 89.
    Jiao Z (2011) N, Huang, K W, Wang, P, Wu J Org Lett 13:3652–3655Google Scholar
  90. 90.
    Katariya S, Rhyman L, Alswaidan IA, Ramasami P, Sekar N (2017) Triphenylamine-Based Fluorescent Styryl Dyes: DFT, TD-DFT and Non-Linear Optical Property Study. J Fluoresc 27:993–1007CrossRefGoogle Scholar
  91. 91.
    Margar SN, Sekar N (2016) Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study. Mol Phys 114:1867–1879CrossRefGoogle Scholar
  92. 92.
    Cho MJ, Choi DH, Sullivan PA, Akelaitis AJP, Dalton LR (2008) Recent progress in second-order nonlinear optical polymers and dendrimers. Prog Polym Sci 33:1013–1058CrossRefGoogle Scholar
  93. 93.
    Tayade RP, Sekar N (2016) Benzimidazole-thiazole based NLOphoric styryl dyes with solid state emission – Synthesis, photophysical, hyperpolarizability and TD-DFT studies. Dyes Pigments 128:111–123CrossRefGoogle Scholar
  94. 94.
    Jenekhe SA, Osaheni JA, Meth JS, Vanherzeele H (1992) Nonlinear optical properties of poly(p-phenylenebenzobisoxazole). Chem Mater 4:683–687CrossRefGoogle Scholar
  95. 95.
    Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  96. 96.
    Momicchioli F, Ponterini G, Vanossi D (2008) First- and Second-Order Polarizabilities of Simple Merocyanines. An Experimental and Theoretical Reassessment of the Two-Level Model. J Phys Chem A 112:11861–11872CrossRefGoogle Scholar
  97. 97.
    Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. J Am Chem Soc 116:10703–10714CrossRefGoogle Scholar
  98. 98.
    S.K. Lanke, N. Sekar, J. Fluoresc. 25(2015)1469–1480. J.L. Oudar, D.S. Chemla, J. Chem. Phys. 66, (1977), 2664–2668Google Scholar
  99. 99.
    Abbotto A, Beverina L, Bradamante S, Facchetti A, Klein C, Pagani GA et al (2003) Chem Eur J 9:991–2007CrossRefGoogle Scholar
  100. 100.
    Momicchioli F, Ponterini G, Vanossi D (2008) First- and second-order polarizabilities of simple merocyanines. J Phys Chem A 112:11861–11872CrossRefGoogle Scholar
  101. 101.
    Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457CrossRefGoogle Scholar
  102. 102.
    Margar SN, Rhyman L, Ramasami P, Sekar N (2016) Fluorescent difluoroboron-curcumin analogs: An investigation of the electronic structures and photophysical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 152:241–251CrossRefGoogle Scholar
  103. 103.
    Champagne B, Perpete EA, Andre J, Kirtman B (1997) Analysis of the vibrational static and dynamic second hyperpolarizabilities of polyacetylene chains. Syn Metals 85:1047–1050CrossRefGoogle Scholar
  104. 104.
    Parr RG, Yang W Density-functional theory of atoms and molecules. Oxford University Press, New York, p 19Google Scholar
  105. 105.
    Kremser G, Hofmann OT, Sax S, Kappaun S, List EJW, Zojer E, Slugovc C (2008) Synthesis and Photophysical Properties of 3,6-Diphenyl-9-hexyl-9H-carbazole Derivatives Bearing Electron Withdrawing Groups. Monatsh Chem 139:223–231CrossRefGoogle Scholar
  106. 106.
    Lanke SK, Sekar N (2016) Novel NLOphoric 2-methoxy carbazole-based push pull chromophores: Synthesis, photophysical properties and TD-DFT Study. J Photochem Photobiol A Chem 321:63–71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Dyestuff TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations