Pyrene Based Fluorescent Turn-on Chemosensor for Sequential Detection of Fe3+ and Fe2+ Ions and its Application in Live Cell Imaging

  • Rajasekaran Dhivya
  • Asaithambi Gomathi
  • Periasamy ViswanathamurthiEmail author


A simple pyrene-based “turn-on” chemosensor bearing isonizide namely 3-(pyren-1-yl methylene) pentane-2,4-diyldene di(isonicotinohydrazide) (PMPD) was designed and synthesized for detecting Fe3+and Fe2+ ions in HEPES buffer solution at pH 7.4 (DMSO: H2O (1:9 v/v)) medium. The probe shows conducive selectivity for Fe2+ and Fe3+ ions over the other competitive metal cations. The detection limit was found to be 1.67 μM for Fe3+ and 2.02 μM for Fe2+. The recognition mechanism of PMPD towards Fe3+ and Fe2+ has been examined in detail by absorption, emission, and ESI-MS studies. Moreover, “turn-on” fluorescence behavior of the probe was used to track iron ions in living cells.


Schiff base Fluorescence probe Iron ions Cell imaging 



The authors express their sincere thanks to Council of Scientific and Industrial Research (CSIR), New Delhi, India [Grant No. 01(2907)/17/EMR-II] for financial support.

Supplementary material

10895_2019_2392_MOESM1_ESM.doc (516 kb)
ESM 1 (DOC 516 kb)


  1. 1.
    Liu S, Wang YM, Han J (2017) Fluorescent Chemosensors for copper(II) ion: structure, mechanism and application. J Photochem Photobiol C 32:78–103CrossRefGoogle Scholar
  2. 2.
    Chen CH, Cho C, Wan CF, Wu AT (2014) A colorimetric sensor for Fe2+ ion. Inorg Chem Commun 41:88–91CrossRefGoogle Scholar
  3. 3.
    Liang ZQ, Wang CX, Yang JX, Gao HW, Tian YP, Tao XT, Jiang MH (2007) A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New J Chem 31:906–910CrossRefGoogle Scholar
  4. 4.
    Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206CrossRefGoogle Scholar
  5. 5.
    Yang Y, Yin C, Huo F, Zhang Y, Chao J (2014) A ratiometric colorimetric and fluorescent chemosensor for rapid detection hydrogen sulfide and its bioimaging. Sensors Actuators B Chem 203:596–601CrossRefGoogle Scholar
  6. 6.
    Zhu A, Luo Z, Ding C, Li B, Zhou S, Wang R, Tian Y (2014) A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Analyst 139:1945–1952CrossRefGoogle Scholar
  7. 7.
    Rohani Moghadam M, Poorakbarian Jahromi SM, Darehkordi A (2016) A two-photon “turn-on” fluorescent probe based on carbon nanodots for imaging and selective biosensing of hydrogen sulfide in live cells and tissues. Food Chem 192:424–431CrossRefGoogle Scholar
  8. 8.
    Feist B, Mikula B (2014) Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem 147:302–306CrossRefGoogle Scholar
  9. 9.
    Ma S, Yang Z, She M, Sun W, Yin B, Liu P, Zhang S, Li J (2015) Design and synthesis of functionalized rhodamine based probes for specific intracellular fluorescence imaging of Fe3+. Dyes Pigments 115:120–126CrossRefGoogle Scholar
  10. 10.
    Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 49:2960–2964CrossRefGoogle Scholar
  11. 11.
    Cowan JA (1997) Inorganic biochemistry: an introduction. Wiley-VCH, New York, pp 167–255Google Scholar
  12. 12.
    Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press Oxford, OxfordGoogle Scholar
  13. 13.
    Matzanke BF, Muller-Matzanke G, Raymond KN (1989) In iron carriers and iron proteins. In: Loehr TM (ed) Physical bioinorganic series. VCH Publishers, New York, pp 1–121Google Scholar
  14. 14.
    Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561CrossRefGoogle Scholar
  15. 15.
    Kaplan CD, Kaplan J (2009) Iron acquisition and transcription. Chem Rev 109:4536–4552CrossRefGoogle Scholar
  16. 16.
    Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanism: an overview. BioMetals 16:63–75CrossRefGoogle Scholar
  17. 17.
    Bonda DJ, Lee H, Blair JA, Zhu X, Perryab G, Smith MA (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3:267–270CrossRefGoogle Scholar
  18. 18.
    Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211CrossRefGoogle Scholar
  19. 19.
    Fakih S, Podinovskaia M, Kong X, Collins HL, Schaible UE, Hider RC (2008) Targeting the lysosome: fluorescent Iron(III) chelators to selectively monitor endosomal/ lysosomal labile Iron pools. J Med Chem 51:4539–4552CrossRefGoogle Scholar
  20. 20.
    Bousejera-ElGarah F, Bijani C, Coppel Y, Faller P, Hureau C (2011) Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorg Chem 50:9024–9030CrossRefGoogle Scholar
  21. 21.
    Şenol AM, Onganer Y, Meral K (2017) An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sensors Actuators B 239:343–351CrossRefGoogle Scholar
  22. 22.
    Li P, Zhao Y, Yao L, Nie H, Zhang M (2014) A simple, selective, fluorescent iron(III) sensing material based on peripheral carbazole. Sensors Actuators B 191:332–336CrossRefGoogle Scholar
  23. 23.
    Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans (13):1907–1917Google Scholar
  24. 24.
    Jitendra N, Samadhan P, Prashant P, Suban S, Carl R, Pramod M, Umesh P (2014) The Amidine based colorimetric sensor for Fe3+, Fe2+, and Cu2+ in aqueous medium. J Fluoresc 24:1563–1570CrossRefGoogle Scholar
  25. 25.
    Rasheed L, Yousuf M, Youn S, Uoon T, Kim KY, Seo YK, Shi G, Saleh M, Hur JH, Kim KS (2015) Turn-on Ratiometric fluorescent probe for selective discrimination of Cr3+ from Fe3+ in aqueous Media for Living Cell Imaging. J Eur chem 21:16349–16349CrossRefGoogle Scholar
  26. 26.
    Goswami S, chakraborty S, Paul S, Halder S, panja S, Mukhopadhay SK (2014) A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application. Org Biomol Chem 12:3037–3044CrossRefGoogle Scholar
  27. 27.
    Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings Publishing Co, Menlo ParkGoogle Scholar
  28. 28.
    Venkatesan M, Sathiyanarayanan KI (2018) Highly selective chemosenor for the detection of Ru3+ ion by fluorescent turn-on response and its bioimaging recognition in living cells. Sensors Actuators B 267:373–380Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryPeriyar UniversitySalemIndia

Personalised recommendations