Advertisement

A Highly Selective Fluorescence “Turn on” and Absorbance-Ratiometric Detection of Al3+ in Totally H2O and its Application in Test Paper

  • Xue-Jiao Sun
  • Yu-Qing Ma
  • Hong Fu
  • Zhi-Yong XingEmail author
  • Zhi-Gang Sun
  • Yue Shen
  • Jin-Long LiEmail author
ORIGINAL ARTICLE
  • 26 Downloads

Abstract

A novel naphthalene based fluorescence probe NBDH was designed and synthesized. Probe NBDH exhibited highly selective and sensitive responses towards Al3+ in HEPES-NaOH buffer solution (pH = 7.4). In addition, the detection of NBDH to Al3+ could be achieved through dual channels embodied in significant fluorescent turn-on signal and ratiometric absorbance response. The stoichiometry ratio of NBDH-Al3+ was 1:1 by fluorescence job’ plot and binging mechanism was further varified by the FT-IR, NMR titration and HRMS. Furthermore, NBDH was achieved in real sample detection, and a series of color test paper were developed for visual detecting Al3+ ions.

Keywords

Fluorescence Naphthalene Al3 + Test paper Ratiometric absorbance 

Notes

Acknowledgements

This work was supported by by the Research Science Foundation in Technology Innovation of Harbin (No. 2017RAQXJ022) and Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (No. LBH-Q14023).

Supplementary material

10895_2019_2374_MOESM1_ESM.doc (2.5 mb)
ESM 1 (DOC 2572 kb)

References

  1. 1.
    Liu YJ, Tian FF, Fang XY, Jiang FL, Liu Y (2017) Fabrication of an acylhydrazone based fluorescence probe for Al3+. Sensors Actuators B Chem 240:916–925.  https://doi.org/10.1016/j.snb.2016.09.051 CrossRefGoogle Scholar
  2. 2.
    Sasitharan K, Varghese A, George L (2017) Flavonol based surface modification of doped chalcogenide nanoflakes as an ultrasensitive fluorescence probe for Al3+ ion. Anal Chim Acta 992:94–104.  https://doi.org/10.1016/j.aca.2017.08.045 CrossRefGoogle Scholar
  3. 3.
    Wen XY, Fan ZF (2016) Linear Schiff-base fluorescence probe with aggregation-induced emission characteristics for Al3+ detection and its application in live cell imaging. Anal Chim Acta 945:75–84.  https://doi.org/10.1016/j.aca.2016.09.036 CrossRefGoogle Scholar
  4. 4.
    Zhang XX, Wang RJ, Liu G, Fan CB, Pu SZ (2016) A highly selective fluorescence probe for Al3+ based on a new diarylethene with a 6-(hydroxymethyl)picolinohydrazide unit. Tetrahedron 72:8449–8455.  https://doi.org/10.1016/j.tet.2016.11.007 CrossRefGoogle Scholar
  5. 5.
    Dhineshkumar E, Iyappan M, Anbuselvan C (2018) Turn on macrocyclic chemosensor for Al3+ ion with facile synthesis and application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 199:209–219.  https://doi.org/10.1016/j.saa.2018.03.053 CrossRefGoogle Scholar
  6. 6.
    Zhu Q, Li L, Mu L, Zeng X, Redshaw C, Wei G (2016) A ratiometric Al3+ ion probe based on the coumarin-quinoline FRET system. J Photochem Photobiol A 328:217–224.  https://doi.org/10.1016/j.jphotochem.2016.06.006 CrossRefGoogle Scholar
  7. 7.
    Wang Y, Ma ZY, Zhang DL, Deng JL, Chen X, Xie CZ, Qiao X, Li QZ (2018) Xu JY, highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 195:157–164.  https://doi.org/10.1016/j.saa.2018.01.049 CrossRefGoogle Scholar
  8. 8.
    Pang BJ, Li CR, Yang ZY (2018) Design of a colorimetric and turn-on fluorescent probe for the detection of Al (III). J Photochem Photobiol A 356:159–165.  https://doi.org/10.1016/j.jphotochem.2017.12046 CrossRefGoogle Scholar
  9. 9.
    Wu WN, Mao PD, Wang Y, Zhao XL, Jia L, Xu ZY (2016) Rhodamine 6G hydrazone bearing thiophene unit: a highly sensitive and selective offeon fluorescent chemosensor for Al3+. J Mol Struct 1122:24–28.  https://doi.org/10.1016/j.molstruc.2016.05.074 CrossRefGoogle Scholar
  10. 10.
    Kumara M, Kumara A, Faizi MSH, Kumara S, Singh MK, Sahu SK, Kishor S, John RP (2018) A selective “turn-on” fluorescent chemosensor for detection of Al3+ in aqueous medium: experimental and theoretical studies. Sensors Actuators B Chem 260:888–899.  https://doi.org/10.1016/j.snb.2018.01.098 CrossRefGoogle Scholar
  11. 11.
    Li DP, Han XJ, Yan ZQ, Cui Y, Miao JY, Zhao BX (2018) A far-red ratiometric fluorescent probe for SO2 derivatives based on the ESIPT enhanced FRET platform with improved performance. Dyes Pigments 151:95–101.  https://doi.org/10.1016/j.dyepig.2017.12.056 CrossRefGoogle Scholar
  12. 12.
    Kang L, Xing ZY, Ma XY, Liu YT, Zhang Y (2016) A highly selective colorimetric and fluorescent turn-on chemosensor for Al3+ based on naphthalimide derivative. Spectrochim Acta A Mol Biomol Spectrosc 167:59–65.  https://doi.org/10.1016/j.saa.2016.05.030 CrossRefGoogle Scholar
  13. 13.
    Li NN, Ma YQ, Zeng S, Liu YT, Sun XJ, Xing ZY (2017) A highly selective colorimetric and fluorescent turn-on chemosensor for Zn2+ and its logic gate behavior. Synth Met 232:17–24.  https://doi.org/10.1016/j.synthmet.2017.07.017 CrossRefGoogle Scholar
  14. 14.
    Naskar B, Modak R, Sikdar Y, Maiti DK, Bauzá A, Frontera A, Katarkar A, Chaudhuri K, Goswami S (2017) Fluorescent sensing of Al3+ by benzophenone based Schiff base chemosensor and live cell imaging applications: impact of keto-enol tautomerism. Sensors Actuators B Chem 239:1194–1204.  https://doi.org/10.1016/j.snb.2016.08.148 CrossRefGoogle Scholar
  15. 15.
    Kang L, Liu YT, Li NN, Dang XX, Xing ZY, Li JL, Zhang Y (2017) A schiff-base receptor based naphthalimide derivative: highly selective and colorimetric fluorescent turn-on sensor for Al3+. J Lumin 186:48–52.  https://doi.org/10.1016/j.jlumin.2016.12.056 CrossRefGoogle Scholar
  16. 16.
    Zhang XX, Wang RJ, Liu G, Fang CB, Pu SZ (2016) A highly selective fluorescence probe for Al3+ based on a new diarylethene with a 6-(hydroxymethyl)picolinohydrazide unit. Tetrahedron 72:8449–8455.  https://doi.org/10.1016/j.tet.2016.11.007 CrossRefGoogle Scholar
  17. 17.
    Li NN, Zeng S, Li MQ, Ma YQ, Sun XJ, Xing ZY, Li JL (2018) A highly selective naphthalimide-based chemosensor: “naked-eye” colorimetric and fluorescent turn-on recognition of Al3+ and its application in practical samples, test paper and logic gate. J Fluoresc 28:347–357.  https://doi.org/10.1007/s10895-017-2197-9 CrossRefGoogle Scholar
  18. 18.
    Maniyazagana M, Mariadasseb R, Nachiappanb M, Jeyakanthanb J, Lokanath NK, Naveenc S, Sivaramand G, Muthurajaa P, Manisankar P, Stalina T (2018) Synthesis of rhodamine based organic nanorods for efficient chemosensor probe for Al (III) ions and its biological applications. Sensors Actuators B Chem 254:795–804.  https://doi.org/10.1016/j.snb.2017.07.106 CrossRefGoogle Scholar
  19. 19.
    Zhou YM, Zhang JL, Zhou H, Hu XY, Zhang L, Zhang M (2013) A highly selective fluorescent probe for Al3+ based on 4-aminoantipyrine. Spectrochim Acta A Mol Biomol Spectrosc 106:68–72.  https://doi.org/10.1016/j.saa.2012.12.084 CrossRefGoogle Scholar
  20. 20.
    Sen B, Sheet SK, Thounaojam R, Jamatia R, Pal AK, Aguan K, Khatua S (2017) A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 173:537–543.  https://doi.org/10.1016/j.saa.2016.10.005 CrossRefGoogle Scholar
  21. 21.
    Diao QP, Ma PY, Lv LL, Li TC, Sun Y, Wang XH, Song DQ (2016) A water-soluble and reversible fluorescent probe for Al3+ and F in living cells. Sensors Actuators B Chem 229:138–144.  https://doi.org/10.1016/j.snb.2016.01.136 CrossRefGoogle Scholar
  22. 22.
    Janakipriya S, Chereddy NR, Korrapati P, Thennarasu S, Mandal AB (2016) Selective interactions of trivalent cations Fe3+, Al3+ and Cr3+ turn on fluorescence in a naphthalimide based single molecular probe. Spectrochim Acta A Mol Biomol Spectrosc 153:465–470.  https://doi.org/10.1016/j.saa.2015.08.044 CrossRefGoogle Scholar
  23. 23.
    Yue XL, Li CR, Yang ZY (2017) A novel Schiff-base fluorescent probe based on 1,8-naphthyridine and naphthalimide for Al3+. Inorg Chim Acta 464:167–171.  https://doi.org/10.1016/j.ica.2017.05.032 CrossRefGoogle Scholar
  24. 24.
    Gupta A, Kumar N (2016) A review of mechanisms for fluorescent “turn-on” probes to detect Al3+ ions. RSC Adv 6:106413–106434.  https://doi.org/10.1039/c6ra23682k CrossRefGoogle Scholar
  25. 25.
    Wang RJ, Wang NS, Pu SZ, Zhang XX, Liu G, Dai YF (2017) A acid/base gated photochromic and fluorescent sensor based on a diarylethene with a 2-(1H-dithienobenzoimidazole)phenol unit. Dyes Pigments 146:445–454.  https://doi.org/10.1016/j.dyepig.2017.07.036 CrossRefGoogle Scholar
  26. 26.
    Liu HY, Zhang BB, Tan CY, Liu F, Cao JK, Tan Y, Jiang YY (2016) Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F and S2− by a simple fluorogenic benzimidazole-based chemosensor. Talanta 161:309–319.  https://doi.org/10.1016/j.talanta.2016.08.061 CrossRefGoogle Scholar
  27. 27.
    Feng ET, Lu RM, Fan CB, Zheng CH, Pu SZ (2017) A fluorescent sensor for Al3+ based on a photochromic diarylethene with a hydrazinobenzothiazole Schiff base unit. Tetrahedron Lett 58:1390–1394.  https://doi.org/10.1016/j.tetlet.2017.02.067 CrossRefGoogle Scholar
  28. 28.
    Maniyazagan M, Mariadasse R, Nachiappan M, Jeyakanthan J, Lokanathc NK, Naveen S, Sivaraman G, Muthuraja P, Manisankar P, Stalin T (2018) Synthesis of rhodamine based organic nanorods for efficientchemosensor probe for Al (III) ions and its biological applications. Sensors Actuators B Chem 254:795–804.  https://doi.org/10.1016/j.snb.2017.07.106 CrossRefGoogle Scholar
  29. 29.
    Singh R, Samanta S, Mullick P, Ramesh A, Das G (2018) Al3+ sensing through different turn-on emission signals Vis-a-Vis two different excitations: applications in biological and environmental realms. Anal Chim Acta 1025:172–180.  https://doi.org/10.1016/j.aca.2018.03.053 CrossRefGoogle Scholar
  30. 30.
    Sarkar D, Ghosh P, Gharami S, Mondal TK, Murmu N (2017) A novel coumarin based molecular switch for the sequential detectionof Al3+ and F: application in lung cancer live cell imaging andconstruction of logic gate. Sensors Actuators B Chem 242:338–346.  https://doi.org/10.1016/j.snb.2016.11.059 CrossRefGoogle Scholar
  31. 31.
    Liao Z, Liu Y, Han SF, Wang D, Zheng JQ, Zheng XJ, Jin LP (2017) A novel acylhydrazone-based derivative as dual-mode chemosensorfor Al3+, Zn2+ and Fe3+ and its applications in cell imaging. Sensors Actuators B Chem 244:914–921.  https://doi.org/10.1016/j.snb.2017.01.074 CrossRefGoogle Scholar
  32. 32.
    Yao DH, Huang XW, Guo FQ, Xie PH (2018) A new fluorescent enhancement chemosensor for Al3+ and Fe3+ based on naphthyridine and benzothiazole groups. Sensors Actuators B Chem 256:276–281.  https://doi.org/10.1016/j.snb.2017.10.080 CrossRefGoogle Scholar
  33. 33.
    Rai A, Singh AK, Tripathi K, Sonkar AK, Chauhan BS, Srikrishna S, James TD, Mishra L (2018) A quick and selective rhodamine based “smart probe” for “signal-on”optical detection of Cu2+ and Al3+ in water, cell imaging, computational studies and solid state analysis. Sensors Actuators B Chem 266:95–105.  https://doi.org/10.1016/j.snb.2018.02.019 CrossRefGoogle Scholar
  34. 34.
    Sen B, Sheet SK, Thounaojam R, Jamatia R, Pal AK, Aguan K, Khatua S (2017) A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 173:537–543.  https://doi.org/10.1016/j.saa.2016.10.005 CrossRefGoogle Scholar
  35. 35.
    Yue XL, Wang ZQ, Li CR, Yang ZY (2018) A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al3+. Spectrochim Acta A Mol Biomol Spectrosc 193:415–421.  https://doi.org/10.1016/j.saa.2017.12.053 CrossRefGoogle Scholar
  36. 36.
    Xu JC, Zhang Y, Zeng LT, Liu JB, Kinsella JM, Sheng RL (2016) A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-cope reaction. Talanta 160:645–652.  https://doi.org/10.1016/j.talanta.2016.08.010 CrossRefGoogle Scholar
  37. 37.
    Santhoshkumar S, Velmurugan K, Prabhu J, Radhakrishnan G, Nandhakumar R (2016) A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorg Chim Acta 439:1–7.  https://doi.org/10.1016/j.ica.2015.09.030 CrossRefGoogle Scholar
  38. 38.
    Sahana A, Banerjee A, Lohar S, Das S, Hauli I, Mukhopadhyay SK, Matalobos JS, Das D (2013) Naphthalene based highly selective OFF-ON-OFF type fluorescent probe for Al3+ and NO2 ions for living cell imaging at physiological pH. Inorg Chim Acta 398:64–71.  https://doi.org/10.1016/j.ica.2012.12.012 CrossRefGoogle Scholar
  39. 39.
    Yue XL, Wang ZQ, Li CR, Yang ZY (2017) Naphthalene-derived Al3+-selective fluorescent chemosensor based on PET and ESIPT in aqueous solution. Tetrahedron Lett 58:4532–4537.  https://doi.org/10.1016/j.tetlet.2017.10.044 CrossRefGoogle Scholar
  40. 40.
    Qin JC, Yang ZY, Yang P (2015) Recognition of Al3+ based on a naphthalene-based “off–on” chemosensor in near 100% aqueous media. Inorg Chim Acta 432:136–141.  https://doi.org/10.1016/j.ica.2015.03.029 CrossRefGoogle Scholar
  41. 41.
    Roy A, Dey S, Halder S, Roy P (2017) Development of a new chemosensor for Al3+ ion: tuning of properties. J Lumin 192:504–512.  https://doi.org/10.1016/j.jlumin.2017.07.020 CrossRefGoogle Scholar
  42. 42.
    Wang QM, Sun HF, Jin L, Wang WL, Zhang ZH, Chen YL (2018) A novel turn on and reversible sensor for Al3+ and its applications in bioimaging. J Lumin 203:113–120.  https://doi.org/10.1016/j.jlumin.2018.06.047 CrossRefGoogle Scholar
  43. 43.
    Zhu JL, Zhang YH, Wang L, Sun TM, Wang M, Wang YP, Ma DY, Yang QQ, Tang YF (2016) A simple turn-on Schiff base fluorescence sensor for aluminum ion. Tetrahedron Lett 57:3535–3539.  https://doi.org/10.1016/j.tetlet.2016.06.112 CrossRefGoogle Scholar
  44. 44.
    Das B, Dey S, Maiti GP, Bhattacharjee A, Dhara A, Jana A (2018) Hydrazinopyrimidine derived novel Al3+ chemosensor: molecular logic gate and biological applications. New J Chem 42:9424–9435.  https://doi.org/10.1039/c7nj05095j CrossRefGoogle Scholar
  45. 45.
    Jo TG, Jung JM, Han J, Lim MH, Kim C (2017) A single fluorescent chemosensor for multiple targets of Cu2+, Fe2+/3+ and Al3+ in living cells and a near-perfect aqueous solution. RSC Adv 7:28723–28732.  https://doi.org/10.1039/c7ra05565j CrossRefGoogle Scholar
  46. 46.
    Wen XY, Fan ZF (2016) Linear Schiff-base fluorescence probe with aggregation-induced emission characteristics for Al3+ detection and its application in live cell imaging. Anal Chim Acta 945:75–84.  https://doi.org/10.1016/j.aca.2016.09.036 CrossRefGoogle Scholar
  47. 47.
    Li CR, Li SL, Yang ZY (2016) A chromone-derived Schiff-base as Al3+ “turn-on” fluorescent probe based on photoinduced electron-transfer (PET) and C=N isomerization. Tetrahedron Lett 57:4898–4904.  https://doi.org/10.1016/j.tetlet.2016.09.058 CrossRefGoogle Scholar
  48. 48.
    Yue XL, Li CR, Yang ZY (2017) A novel Schiff-base fluorescent probe based on 1,8-naphthyridine and naphthalimide for Al3+. Inorg Chim Acta 464:167–171.  https://doi.org/10.1016/j.ica.2017.05.032 CrossRefGoogle Scholar
  49. 49.
    Hossain SM, Singh K, Lakma A, Pradhan RN, Singh AK (2017) A schiff base ligand of coumarin derivative as an ICT-based fluorescence chemosensor for Al3+. Sensors Actuators B Chem 239:1109–1117.  https://doi.org/10.1016/j.snb.2016.08.093 CrossRefGoogle Scholar
  50. 50.
    Naskar B, Modak R, Sikdar Y, Maiti DK, Bauzá A, Frontera A, Katarkar A, Chaudhuri K, Goswami S (2017) Fluorescent sensing of Al3+ by benzophenone based Schiff base chemosensor and live cell imaging applications: impact of keto-enol tautomerism. Sensors Actuators B Chem 239:1194–1204.  https://doi.org/10.1016/j.snb.2016.08.148 CrossRefGoogle Scholar
  51. 51.
    Li W, Tian XH, Huang B, Li HJ, Zhao XY, Gao S, Zheng J, Zhang XZ, Zhou HP, Tian YP, Wu JY (2016) Triphenylamine-based Schiff bases as the high sensitive Al3+ or Zn2+ fluorescence turn-on probe: mechanism and application in vitro and in vivo. Biosens Bioelectron 77:530–536.  https://doi.org/10.1016/j.bios.2015.09.059 CrossRefGoogle Scholar
  52. 52.
    Sheet SK, Sen B, Thounaojam R, Aguan K, Khatua S (2017) Highly selective light-up Al3+ sensing by a coumarin based Schiff base probe: subsequent phosphate sensing DNA binding and live cell imaging. J Photochem Photobiol A 332:101–111.  https://doi.org/10.1016/j.jphotochem.2016.08.019 CrossRefGoogle Scholar
  53. 53.
    Pang BJ, Li CR, Yang ZY (2018) Design of a colorimetric and turn-on fluorescent probe for the detection of Al (III). J Photochem Photobiol A 356:159–165.  https://doi.org/10.1016/j.jphotochem.2017.12.046 CrossRefGoogle Scholar
  54. 54.
    Wang Q, Wen XY, Fan ZF (2018) A Schiff base fluorescent chemsensor for the double detection of Al3+ and PPi through aggregation induced emission in environmental physiology. J Photochem Photobiol A 358:92–99.  https://doi.org/10.1016/j.jphotochem.2018.03.004 CrossRefGoogle Scholar
  55. 55.
    Sen B, Sheet SK, Thounaojam R, Jamatia R, Pal AK, Aguan K, Khatua S (2017) A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 173:537–543.  https://doi.org/10.1016/j.saa.2016.10.005 CrossRefGoogle Scholar
  56. 56.
    Tajbakhsh M, Chalmardi GB, Bekhradnia A, Hosseinzadeh R, Hasani N, Amiri MA (2018) A newfluorene-based Schiff-base as fluorescent chemosensor for selective detection of Cr3+ and Al3+. Spectrochim Acta A Mol Biomol Spectrosc 189:22–31.  https://doi.org/10.1016/j.saa.2017.08.007 CrossRefGoogle Scholar
  57. 57.
    Wang Y, Ma ZY, Zhang DL, Deng JL, Chen X, Xie CZ, Qiao X, Li QZ, Xu JY (2018) Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A Mol Biomol Spectrosc A 195:157–164.  https://doi.org/10.1016/j.saa.2018.01.049 CrossRefGoogle Scholar
  58. 58.
    Qin JC, Cheng XY, Fang R, Wang MF, Yang ZY, Li TR, Li Y (2016) Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): experimental and computational studies. Spectrochim Acta A Mol Biomol Spectrosc A 152:352–357.  https://doi.org/10.1016/j.saa.2015.07.095 CrossRefGoogle Scholar
  59. 59.
    Zeng S, Li SJ, Sun XJ, Li MQ, Ma YQ, Xing ZY, Li JL (2018) A naphthalene-quinoline based chemosensor for fluorescent “turn-on” and absorbance-ratiometric detection of Al3+ and its application in cells imaging. Spectrochim Acta A Mol Biomol Spectrosc A 205:276–286.  https://doi.org/10.1016/j.saa.2015.07.095 CrossRefGoogle Scholar
  60. 60.
    Tong L, Qian Y (2019) A naphthalimide–rhodamine chemodosimeter for hypochlorite based on TBET: high quantum yield and endogeous imaging in living cells. J Photochem Photobiol A 368:62–69.  https://doi.org/10.1016/j.jphotochem.2018.09.027 CrossRefGoogle Scholar
  61. 61.
    Olmsted J (1979) Calorimetric determinations of absolute fluorescence quantum yields. J Phys Chem 83:2581–2584.  https://doi.org/10.1021/j100483a006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of ScienceNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringQiqihar UniversityQiqiharPeople’s Republic of China

Personalised recommendations