Advertisement

Proteinous Polymeric Shell Decorated Nanocrystals for the Recognition of Immunoglobulin M

  • Sibel Büyüktiryaki
  • Filiz Yılmaz
  • Rıdvan Say
  • Arzu ErsözEmail author
ORIGINAL ARTICLE
  • 32 Downloads

Abstract

This study demonstrates the preparation of photosensitively orientated and crosslinked proteinous polymeric shell having quantum dot based nanocrystals through Amino acid Decorated and Light Underpinning Conjugation Approach (ANADOLUCA). ANADOLUCA is based on photo-electron transfer method and uses these decorated nanocrystals for specifically and effectively recognition and detection of Immunoglobulin M in the aqueous environment. The conjugation method effectively provides an orientation of affinity pairs on the surface of quantum dots nanocrystals. This photosensitive ruthenium-based amino acid monomer is a synthetic and inexpensive material for the preparation of bioconjugates. The nanocrystals give advantages for using a wide pH and temperature range. The construction and preparation method is applicable to silica materials, superparamagnetic particles, quantum dots, carbon nanotubes, Ag/Au nanoparticles, Au surfaces, and polymeric materials. This prepared proteinous polymeric shell decorated nanocrystals are of great potential in applications in life sciences and can be used in infection case studies or allergy symptoms.

Keywords

Orientated conjugation Recognition of IgM ANADOLUCA method Quantum dots Photosensitive crosslinking 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Financial Interests

The authors declare no competing financial interest.

References

  1. 1.
    Tarköy M, Wyss M, Rudolf MP (2010) A comparative characterization of dipentameric (IgM)2 and pentameric IgM species present in preparations of a monoclonal IgM for therapeutic use. J Pharm Biomed Anal 51:1084–1090.  https://doi.org/10.1016/j.jpba.2009.11.003 CrossRefGoogle Scholar
  2. 2.
    Evans SV, MacKenzie CR (1999) Characterization of protein-glycolipid recognition at the membrane bilayer. J Mol Recognit 12:155–168.  https://doi.org/10.1002/(SICI)1099-1352(199905/06)12:3<155::AID-JMR456>3.0.CO;2-S CrossRefGoogle Scholar
  3. 3.
    Patil S, Martinez NF, Lozano JR, Garcia R (2007) Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J Mol Recognit 20:516–523.  https://doi.org/10.1002/jmr.848 CrossRefGoogle Scholar
  4. 4.
    Shepherd D (2005) Encyclopedic reference of Immunotoxicology. Springer-Verlag, Berlin, Heidelberg.  https://doi.org/10.1007/3-540-27806-0 Google Scholar
  5. 5.
    Burrell CJ, Howard CR, Murphy FA (2017) Adaptive immune responses to infection. In: Fenner and White’s Medical Virology. Elsevier, pp 65–76  https://doi.org/10.1016/B978-0-12-375156-0.00006-0
  6. 6.
    Actor JK (2014) The B lymphocyte and the humoral response. In: Introductory Immunology. Elsevier, pp 28–41.  https://doi.org/10.1016/B978-0-12-420030-2.00003-2
  7. 7.
    Koppel R, Solomon B (2001) IgM detection via selective recognition by mannose-binding protein. J Biochem Biophys Methods 49:641–647.  https://doi.org/10.1016/S0165-022X(01)00225-1 CrossRefGoogle Scholar
  8. 8.
    Chen PJ, Wang JT, Hwang LH, Yang YH, Hsieh CL, Kao JH, Sheu JC, Lai MY, Wang TH, Chenet DS (1992) Transient immunoglobulin M antibody response to hepatitis C virus capsid antigen in posttransfusion hepatitis C: putative serological marker for acute viral infection. Proc Natl Acad Sci U S A 89:5971–5975CrossRefGoogle Scholar
  9. 9.
    Zhou JW, Lei LM, Liang QN, Liu TC, Lin GF, Dong ZN, Liang RL, Chen ZH, Wu YS (2015) Dual-labeled time-resolved immunofluorometric assay for the determination of IgM antibodies to rubella virus and cytomegalovirus in human serum. Clin Biochem 48:603–608.  https://doi.org/10.1016/j.clinbiochem.2015.01.009 CrossRefGoogle Scholar
  10. 10.
    Atias D, Liebes Y, Chalifa-Caspi V, Bremand L, Lobel L, Marks RS, Dussart P (2009) Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans. Sensors Actuators B 140:206–215.  https://doi.org/10.1016/j.snb.2009.03.044 CrossRefGoogle Scholar
  11. 11.
    Omar NAS, Fen YW (2017) Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein. Sens Rev 38:106–116.  https://doi.org/10.1108/SR-07-2017-0130 CrossRefGoogle Scholar
  12. 12.
    Darwish NT, Alias YB, Khor SM (2015) An introduction to dengue-disease diagnostics. TrAC Trends Anal Chem 67:45–55.  https://doi.org/10.1016/j.trac.2015.01.005 CrossRefGoogle Scholar
  13. 13.
    de Swart RL, Vos HW, UytdeHaag FG et al (1998) Measles virus fusion protein- and hemagglutinin-transfected cell lines are a sensitive tool for the detection of specific antibodies by a FACS-measured immunofluorescence assay. J Virol Methods 71:35–44 https://doi.org/10.1016/S0166-0934(97)00188-2
  14. 14.
    Jiang Z, Wei L, Zou M et al (2008) Rapid assay of trace immunoglobulin M by a new immunonanogold resonance scattering spectral probe. J Biomol Screen 13:302–308.  https://doi.org/10.1177/1087057108316737 CrossRefGoogle Scholar
  15. 15.
    Diltemiz SE, Ersöz A, Hür D, Keçili R, Say R (2013) 4-Aminophenyl boronic acid modified gold platforms for influenza diagnosis. Mater Sci Eng C 33:824–830.  https://doi.org/10.1016/j.msec.2012.11.007 CrossRefGoogle Scholar
  16. 16.
    Zheng H, Du X (2009) Enhanced binding and biosensing of carbohydrate-functionalized monolayers to target proteins by surface molecular imprinting. J Phys Chem B 113:11330–11337.  https://doi.org/10.1021/jp9060279 CrossRefGoogle Scholar
  17. 17.
    Boschetti E, Jungbauer A (2000) Separation of antibodies by liquid chromatography. Sep Sci Technol 2:535–632.  https://doi.org/10.1016/S0149-6395(00)80062-8 Google Scholar
  18. 18.
    Chen GY, Chen CY, Chang MDT, Matsuura Y, Hu YC (2009) Concanavalin a affinity chromatography for efficient baculovirus purification. Biotechnol Prog 25:1669–1677.  https://doi.org/10.1002/btpr.253 Google Scholar
  19. 19.
    Bronzoni RVM, Fatima M, Montassier S, Pereira GT, Gama NMSQ, Sakai V, Montassier HJ (2005) Detection of infectious bronchitis virus and specific anti-viral antibodies using a concanavalin A-Sandwich-ELISA. Viral Immunol 18:569–578.  https://doi.org/10.1089/vim.2005.18.569 CrossRefGoogle Scholar
  20. 20.
    Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41:2641–2655.  https://doi.org/10.1039/C1CS15238F CrossRefGoogle Scholar
  21. 21.
    Rizvi S, Ghaderi S, Keshtgar M, Seifalian A (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1:1–15.  https://doi.org/10.3402/nano.v1i0.5161 CrossRefGoogle Scholar
  22. 22.
    Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. TrAC Trends Anal Chem 25:207–218.  https://doi.org/10.1016/j.trac.2005.07.008 CrossRefGoogle Scholar
  23. 23.
    Bilan R, Fleury F, Nabiev I, Sukhanova A (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem 26:609–624.  https://doi.org/10.1021/acs.bioconjchem.5b00069 CrossRefGoogle Scholar
  24. 24.
    Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789.  https://doi.org/10.1021/bm061197b CrossRefGoogle Scholar
  25. 25.
    Say R, Büyüktiryaki S, Hür D, Yılmaz F, Ersöz A (2012) Mutual recognition of TNT using antibodies polymeric shell having CdS. Talanta 90:103–108.  https://doi.org/10.1016/j.talanta.2012.01.007 CrossRefGoogle Scholar
  26. 26.
    Say R. (2011) Photosensitive Aminoacid-Monomer Linkage and Bioconjugation Applications in Life Sciences and Biotechnology. U.S. Patent No 20110311505 A1, World Intellectual Property Organization‐PatentScope. Available at: www.wipo.int/patentscope/search/en/WO2011070402. (Pub. No.: WO/2011/070402; Int. Appl. No.: PCT/IB2009.055707)Google Scholar
  27. 27.
    Hur D, Ekti SF, Say R (2007) N-acylbenzotriazole mediated synthesis of some methacrylamido amino acids. Lett Org Chem 4:585–587.  https://doi.org/10.2174/157017807782795556 CrossRefGoogle Scholar
  28. 28.
    Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75:890–896.  https://doi.org/10.1016/j.talanta.2007.12.036 CrossRefGoogle Scholar
  29. 29.
    Mattoussi H, Medintz IL, Clapp AR, Goldman ER, Jaiswal JK, Simon SM, Mauro JM (2004) Luminescent quantum dot-bioconjugates in immunoassays, FRET, biosensing, and imaging applications. J Lab Autom 9:28–32.  https://doi.org/10.1016/S1535-5535-03-00083-2 Google Scholar
  30. 30.
    Stringer RC, Schommer S, Hoehn D, Grant SA (2008) Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of porcine reproductive and respiratory syndrome virus. Sensors Actuators B Chem 134:427–431.  https://doi.org/10.1016/j.snb.2008.05.018 CrossRefGoogle Scholar
  31. 31.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732.  https://doi.org/10.1016/j.biomaterials.2007.07.014 CrossRefGoogle Scholar
  32. 32.
    Xu C, Xing B, Rao J (2006) A self-assembled quantum dot probe for detecting -lactamase activity. Biochem Biophys Res Commun 344:931–935.  https://doi.org/10.1016/j.bbrc.2006.03.225 CrossRefGoogle Scholar
  33. 33.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240.  https://doi.org/10.1016/j.addr.2008.03.015 CrossRefGoogle Scholar
  34. 34.
    Tsoi PY, Yang J, Sun Y, Sui SF, Yang M (2000) Surface Plasmon resonance study of DNA polymerases binding to template/primer DNA duplexes immobilized on supported lipid monolayer. Langmuir 16:6590–6596.  https://doi.org/10.1021/la9912951 CrossRefGoogle Scholar
  35. 35.
    Yang M, Tsoi PY, Li CW, Zhao J (2006) Analysis of interactions of template/primer duplexes with T7 DNA polymerase by oligonucleotide microarray. Sensors Actuators B Chem 115:428–433.  https://doi.org/10.1016/j.snb.2005.10.008 CrossRefGoogle Scholar
  36. 36.
    Persson B, Stenhag K, Nilsson P, Larsson A, Uhlén M, Nygren P (1997) Analysis of oligonucleotide probe affinities using surface plasmon resonance: a means for mutational scanning. Anal Biochem 246:34–44.  https://doi.org/10.1006/abio.1996.9988 CrossRefGoogle Scholar
  37. 37.
    Coulibaly FS, Youan B-BC (2014) Concanavalin a–polysaccharides binding affinity analysis using a quartz crystal microbalance. Biosens Bioelectron 59:404–411.  https://doi.org/10.1016/j.bios.2014.03.040 CrossRefGoogle Scholar
  38. 38.
    Mislovičová D, Masárová J, Švitel J et al (2002) Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin a. Bioconjug Chem 13:136–142.  https://doi.org/10.1021/bc015517u CrossRefGoogle Scholar
  39. 39.
    Dam TK, Roy R, Das SK, Oscarson S, Brewer CF (2000) Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the “multivalency effect”. J Biol Chem 275:14223–14230.  https://doi.org/10.1074/jbc.275.19.14223 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sibel Büyüktiryaki
    • 1
  • Filiz Yılmaz
    • 2
  • Rıdvan Say
    • 3
    • 4
  • Arzu Ersöz
    • 2
    • 4
    • 5
    Email author
  1. 1.Yunusemre Vocational SchoolAnadolu UniversityEskisehirTurkey
  2. 2.Department of ChemistryEskişehir Technical UniversityEskisehirTurkey
  3. 3.Department of ChemistryAnadolu UniversityEskisehirTurkey
  4. 4.Bionkit Co Ltd.Anadolu University TeknoparkEskisehirTurkey
  5. 5.Fen Fakültesi, Kimya BölümüEskişehir Teknik UniversitesiEskişehirTurkey

Personalised recommendations