Advertisement

Rotational Diffusion of Medium Sized 7-[Diethylamino]-2H-1-Benzopyran-2-One Molecule in Alcohols: Study of Temperature and Solvent Viscosity Effect

  • Anil Kumar
  • Y. F. Nadaf
  • C. G. RenukaEmail author
ORIGINAL ARTICLE
  • 21 Downloads

Abstract

The rotational re-orientations times of the 7-[diethylamino]-2H-1-benzopyran-2-one (7-DHB) dye molecule have been examined in ethanol and octanol solvents when macroscopic solvent viscosity parameter is varied by varying the temperature, by employing the steady-state fluorescence depolarisation and Time-Correlated Single Photon Counting (TCSPC) techniques. Experimental observation shows that 7-DHB probe is experiencing higher friction in octanol compared to ethanol and rotates slower by a factor of 7.3. The hydrodynamic Stokes Einstein’s Debye theory (SED) with a stick, slip boundary conditions parameters, quasi-hydrodynamic models (Dote-Kivelson-Schwartz and Geirer-Wirtz) were used to determine mechanical friction and found an interesting towards super slip trend. Dielectric frictional theories of point dipole, Nee-Zwanzig and van der Zwan-Hynes both models fail to describe experimentally observe dielectric friction trends. Evidently, both hydrodynamic and dielectric models failed to explain the examined behavior, even in the qualitative way in alcohols.

Keywords

Laser dye Hydrodynamic theories Reorientation times Super slip Point dipole dielectric theories 

Notes

References

  1. 1.
    Mali KS, Dutt GB, Mukherjee T (2008) Rotational diffusion of a nonpolar and a dipolar solute in 1-butyl-3-methylimidazolium hexafluorophosphate and glycerol: interplay of size effects and specific interactions. J Chem Phys 128:054504-1–054504-9.  https://doi.org/10.1063/1.2827473 Google Scholar
  2. 2.
    Chinna a s P, Jeyabalan S et al (2018) Anthracene-based highly selective and sensitive fluorescent “turn on” chemodosimeter for Hg2+. ACS Omega 3:12341–12348CrossRefGoogle Scholar
  3. 3.
    Vandarkuzhali SAA, Natarajan S, Jeyabalan S, Sivaraman G, Singaravadivel S, Muthusubramanian S, Viswanathan B (2018) Pineapple Peel-derived carbon dots: applications as sensor, molecular keypad lock, and memory device. ACS Omega 3:12584–12592CrossRefGoogle Scholar
  4. 4.
    Perumal S, Karuppannan S et al (2018) Rhodamine-benzothiazole conjugate as an efficient multimodal sensor for Hg2+ ions and its applications of imaging in living cells. New J Chem 42:11665–11672CrossRefGoogle Scholar
  5. 5.
    Kumara GGV, Kesavana MP et al Reversible NIR Fluorescent probes for Cu2+ ions detection and its Living cell imaging. Sensors Actuators B Chem 255:3235–3247Google Scholar
  6. 6.
    Kumara GGV, Kesavana MP et al (2018) Colorimetric and NIR fluorescence receptors for F− ion detection in aqueous condition and its live cell imaging. Sensors Actuators B Chem 255:3194–3206CrossRefGoogle Scholar
  7. 7.
    Ranee SJ, Sivaraman G et al (2018) Quinoline based sensors for bivalent copper ions in living cells. Sensors Actuators B Chem 246:630–637CrossRefGoogle Scholar
  8. 8.
    Kumar GGV, Kesavan MP et al (2018) A reversible fluorescent chemosensor for the rapid detection of Hg2+ in an aqueous solution: its logic gates behaviour. Sensors Actuators B Chem 273:306–315Google Scholar
  9. 9.
    Elumalai Ramachandran, Somasundaram Anbu Anjugam Vandarkuzhali et al (2018) Phenothiazine based donor - acceptor compounds with SolidState emission in the yellow to NIR region and their highly selective and sensitive detection of cyanide ion in ppb level. Chem Eur J 24:11042–11050CrossRefGoogle Scholar
  10. 10.
    Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellappa D (2018) Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev 357:50–104CrossRefGoogle Scholar
  11. 11.
    Maniyazagan M, Mariadasse R, Nachiappan M, Jeyakanthan J, Lokanath NK, Naveen S, Sivaraman G, Muthuraja P, Manisankar P, Stalin T (2018) Synthesis of rhodamine based organic nanorods for efficient chemosensor probe for Al (III) ions and its biological applications. Sensors Actuators B Chem 254:795–804CrossRefGoogle Scholar
  12. 12.
    Omprakash Sunnapu, Niranjan G Kotla et al (2017) Rhodamine-based fluorescent turn-on probe for facile sensing and imaging of ATP in mitochondria. Chem Sel 2: 7654–7658Google Scholar
  13. 13.
    Sufi O Raja, Gandhi Sivaraman et al (2017) Facile synthesis of highly sensitive, red-emitting, Fluorogenic dye for microviscosity and mitochondrial imaging in embryonic stem cells. Chem Sel 2: 4609–4616Google Scholar
  14. 14.
    Omprakash Sunnapu, Niranjan G Kotla et al (2017) Rhodamine based effective hemosensor for chromium(III) and their application in live cell imaging. Sensors Actuators B Chem 246:761–768Google Scholar
  15. 15.
    Shree GJ, Sivaraman G, Siva A, Chellappa D (2019) Anthracene- and pyrene-bearing imidazoles as turn-on fluorescent chemosensor for aluminum ion in living cells. Dyes Pigments 163:204–212CrossRefGoogle Scholar
  16. 16.
    Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S (2017) Rhodamine Diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd2+ ion. J Fluoresc 27:1109–1115CrossRefGoogle Scholar
  17. 17.
    Tao T (1969) Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8:609–632CrossRefGoogle Scholar
  18. 18.
    Einstein A (1956) Investigations in theory of Brownian motion. Dover, New YorkGoogle Scholar
  19. 19.
    Kubinyi M, Grofcsik A, Pápai I, Jones WJ (2003) Rotational reorientation dynamics of nile blue a and oxazine 720 in protic solvents. Chem Phys 286:81–96.  https://doi.org/10.1016/S0301-0104(02)00908-4 CrossRefGoogle Scholar
  20. 20.
    Zhou P, Song P, Liu J, Shi Y, Han K, He G (2008) Rotational reorientation dynamics of oxazine 750 in polar solvents. J Phys Chem A 112:3646–3655.  https://doi.org/10.1021/jp7120998 CrossRefGoogle Scholar
  21. 21.
    Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM (2006) Rotational diffusion and solvatochromic correlation of coumarin 6 laser dye. J Fluoresc 16:847–854.  https://doi.org/10.1007/s10895-006-0126-4 CrossRefGoogle Scholar
  22. 22.
    Gangamallaiah V, Dutt GB (2012) Rotational diffusion of nonpolar and ionic solutes in 1-Alkyl-3- methylimidazolium bis (trifluoromethylsulfonyl) imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation? J Phys Chem B 116:12819–12825.  https://doi.org/10.1021/jp307959z CrossRefGoogle Scholar
  23. 23.
    Prabhu SR, Dutt GB (2014) Rotational diffusion of nonpolar and charged solutes in propylammonium nitrate-propylene glycol mixtures: does the organized structure of the ionic liquid influence solute rotation? J Phys Chem B 118:2738–2745.  https://doi.org/10.1021/jp501343k CrossRefGoogle Scholar
  24. 24.
    Prabhu SR, Dutt GB (2014) Rotational diffusion of nondipolar and charged solutes in alkyl-substituted imidazolium triflimides: effect of C2 methylation on solute rotation. J Phys Chem B 118:9420–9426.  https://doi.org/10.1021/jp5055155 CrossRefGoogle Scholar
  25. 25.
    Nadaf YF, Renuka CG, Raikar US (2013) Temperature-dependent reorientation dynamics of laser dyes in alkane and alcohol solvents. Can J Phys 91:677–681CrossRefGoogle Scholar
  26. 26.
    Sharma A, Ghorai PK (2018) Effect of alcohols on the structure and dynamics of [BMIM][PF6] ionic liquid: A combined molecular dynamics simulation and Voronoi tessellation investigation. J Chem Phys 148:204514–1–204514-11.  https://doi.org/10.1063/1.5008439 Google Scholar
  27. 27.
    Nadaf YF, Renuka CG (2015) Analysis of rotational diffusion of coumarin laser dyes. Can J Phys 93:3–6CrossRefGoogle Scholar
  28. 28.
    Dutt GB, Ghanty TK (2004) Rotational dynamics of nondipolar probes in butanols: correlation of reorientation times with solute-solvent interaction strengths. J Phys Chem A 108:6090–6095.  https://doi.org/10.1021/jp048601q CrossRefGoogle Scholar
  29. 29.
    Osman D, Erol A (2009) Apparent molar volumes and isentropic compressibilities of benzyltrialkylammonium chlorides in water at (293.15, 303.15, 313.15,323.15 and 333.15) K. J Chem Thermodyn 41:911–915CrossRefGoogle Scholar
  30. 30.
    Erol A, Osman D (2010) Apparent molar volumes and isentropic compressibilities of benzene sulfonates and naphthalene sulfonates in aqueous solution at (293.15, 303.15, 313.15,323.15 and 333.15) K. J Chem Eng Data 55(2):947–952CrossRefGoogle Scholar
  31. 31.
    Hay CE, Marken F, Blanchard GJ (2010) Solvent-dependent changes in molecular reorientation dynamics: the role of solvent-solvent interactions. J Phys Chem A 114:4957–4962.  https://doi.org/10.1021/jp912217r CrossRefGoogle Scholar
  32. 32.
    Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents. J Phys Chem B 111:7291–7302.  https://doi.org/10.1021/jp070923h CrossRefGoogle Scholar
  33. 33.
    Kumar PV, Maroncelli M (2000) The non-separability of dielectric and mechanical friction in molecular systems: a simulation study. J Chem Phys 12:5370–5381.  https://doi.org/10.1063/1.481107 CrossRefGoogle Scholar
  34. 34.
    Prabhu SR, Dutt GB (2015) Rotational diffusion of charged and nondipolar solutes in ionic liquid-organic solvent mixtures: evidence for stronger specific solute-solvent interactions in presence of organic solvent. J Phys Chem B 119:10720–10726.  https://doi.org/10.1021/acs.jpcb.5b06297 CrossRefGoogle Scholar
  35. 35.
    Dutt GB (2005) Molecular rotation as a tool for exploring specific solute-solvent interactions. Chem Phys Chem 6:413–418.  https://doi.org/10.1002/cphc.200400337 CrossRefGoogle Scholar
  36. 36.
    Guo J, Han KS, Mahurin SM, Baker GA, Hillesheim PC, Dai S, Hagaman EW, Shaw RW (2012) Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: a combined time-resolved fluorescence anisotropy decay and NMR study. J Phys Chem B 116:7883–7890CrossRefGoogle Scholar
  37. 37.
    Tiwari AK, Sonu SSK (2014) Effect of hydroxyl group substituted spacer group of cationic gemini surfactants on solvation dynamics and rotational relaxation of coumarin-480 in aqueous micelles. J Phys Chem B 118:3582–3592.  https://doi.org/10.1021/jp4069703 CrossRefGoogle Scholar
  38. 38.
    Nee TW, Zwanzig R (1970) Theory of dielectric relaxation in polar liquids. J Chem Phys 52:6353–6363.  https://doi.org/10.1063/1.1672951 CrossRefGoogle Scholar
  39. 39.
    Hu C, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354–4357CrossRefGoogle Scholar
  40. 40.
    Madden P, Kivelson D (1982) Dielectric friction and molecular reorientation. J Phys Chem 86:4244–4256.  https://doi.org/10.1021/j100218a031 CrossRefGoogle Scholar
  41. 41.
    Van Der Zwan G, Hynes JT (1985) Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents. J Phys Chem 89:4181–4188.  https://doi.org/10.1021/j100266a008 CrossRefGoogle Scholar
  42. 42.
    Ben-Amotz D, Drake JM (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029.  https://doi.org/10.1063/1.455253 CrossRefGoogle Scholar
  43. 43.
    Simon JD, Thompson PA (1990) Spectroscopy and rotational dynamics of oxazine 725 in alcohols: a test of dielectric friction theories. J Chem Phys 92:2891–2896.  https://doi.org/10.1063/1.457936 CrossRefGoogle Scholar
  44. 44.
    Alavi DS, Hartman RS, Waldeck DH (1991) A test of continuum models for dielectric friction. Rotational diffusion of phenoxazine dyes in dimethylsulfoxide. J Chem Phys 94:4509–4520.  https://doi.org/10.1063/1.460606 CrossRefGoogle Scholar
  45. 45.
    Goudar R, Gupta R, Kulkarni GU, Inamdar SR (2015) Rotational diffusion of a new large non polar dye molecule in alkanes. J Fluoresc 25:1671–1679.  https://doi.org/10.1007/s10895-015-1654-6 CrossRefGoogle Scholar
  46. 46.
    Horng ML, Gardecki JA, Maroncelli M (1997) Rotational dynamics of coumarin 153: time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047.  https://doi.org/10.1021/jp962921v CrossRefGoogle Scholar
  47. 47.
    Maroncelli M (1997) Continuum estimates of rotational dielectric friction and polar solvation. J Chem Phys 106:1545–1555.  https://doi.org/10.1063/1.473276 CrossRefGoogle Scholar
  48. 48.
    Dutt GB, Raman S (2001) Rotational dynamics of coumarins: an experimental test of dielectric friction theories. J Chem Phys 114:6702–6713.  https://doi.org/10.1063/1.1357797 CrossRefGoogle Scholar
  49. 49.
    Mannekutla JR, Inamdar SR, Mulimani BG, Savadatti MI (2010) Rotational diffusion of Coumarins: a dielectric friction study. J Fluoresc 20:797–808.  https://doi.org/10.1007/s10895-010-0606-4 CrossRefGoogle Scholar
  50. 50.
    Inamdar SR, Mannekutla JR, Mulimani BG, Savadatti MI (2006) Rotational dynamics of nonpolar laser dyes. Chem Phys Lett 429:141–146.  https://doi.org/10.1016/j.cplett.2006.08.020 CrossRefGoogle Scholar
  51. 51.
    Hughes RM, Mutzenhardt P, Bartolotti L, Rodriguez AA (2008) Experimental and theoretical analysis of the reorientational dynamics of fullerene C70 in various aromatic solvents. J Phys Chem A 112:4186–4193.  https://doi.org/10.1021/jp800027j CrossRefGoogle Scholar
  52. 52.
    Gayathri BR, Mannekutla JR, Inamdar SR (2008) Rotational diffusion of coumarins in alcohols: a dielectric friction study. J Fluoresc 18:943–952CrossRefGoogle Scholar
  53. 53.
    Lackowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkCrossRefGoogle Scholar
  54. 54.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  55. 55.
    Renuka CG, Shivashankar K, Boregowda P, Bellad SS, Muregendrappa MV, Nadaf YF (2017) An experimental and computational study of 2-(3-Oxo3H-benzo[f] chromen-1-ylmethoxy)-benzoic acid methyl Ester. J Solut Chem 46:1535–1555.  https://doi.org/10.1007/s10953-017-0661-4 CrossRefGoogle Scholar
  56. 56.
    Renuka CG, Nadaf YF, Sriprakash G, Rajendra Prasad S (2018) Solvent dependence on structure and electronic properties of 7-(Diethylamino) – 2H -1- Benzopyran −2- one (C-466) laser dye. J Fluoresc 28:839–854.  https://doi.org/10.1007/s10895-018-2249-9 CrossRefGoogle Scholar
  57. 57.
    Edward JT (1970) Molecular volumes and the stokes-Einstein equation. J Chem Educ 47:261–270.  https://doi.org/10.1021/ed047p2613/1.1680910 CrossRefGoogle Scholar
  58. 58.
    Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, LondonGoogle Scholar
  59. 59.
    Small EW, Isenberg I (1977) Hydrodynamic properties of a rigid macromolecule: rotational and linear diffusion and fluorescence anisotropy. Biopolymers 16:1907–1928CrossRefGoogle Scholar
  60. 60.
    Sension RJ, Hochstrasser RM (1993) Comment on: rotational friction coefficients for ellipsoids and chemical molecules with slip boundary conditions. J Chem Phys 98:2490CrossRefGoogle Scholar
  61. 61.
    Gierer VA, Wirtz K (1953) Molecular theory of microreiberation. Z Naturforschg 8A:532–538Google Scholar
  62. 62.
    Dean JA (1999) Lange's handbook of chemistry. Mcgraw-Hill, Inc, New YorkGoogle Scholar
  63. 63.
    Bartnikas R (1994) Engineering dielectrics. PA ASTMA, PhiladelphiaGoogle Scholar
  64. 64.
    Dannhauser W (1968) Dielectric relaxation in isomeric Octyl alcohols. J Chem Phys 48:1918–1923.  https://doi.org/10.1063/1.1668990 CrossRefGoogle Scholar
  65. 65.
    ShyhGang S, Simon JD (1988) The importance of vibrational motion and solvent diffusional motion in excited state intramolecular electron transfer reactions. J Chem Phys 89:908–919.  https://doi.org/10.1063/1.455214 CrossRefGoogle Scholar
  66. 66.
    Dutt GB, Doraiswamy S, Periasamy N, Venkataraman B (1990) Rotational reorientation dynamics of polar dye molecular probes by picosecond laser spectroscopic technique. J Chem Phys 93:8498–8513.  https://doi.org/10.1063/1.459288 CrossRefGoogle Scholar
  67. 67.
    Dutt GB, Ghanty TK (2003) Rotational dynamics of nondipolar probes in associative solvents: modeling of hydrogen bonding interactions using the extended charge distribution theory of dielectric friction. J Chem Phys 118:4127–4133.  https://doi.org/10.1063/1.1540092 CrossRefGoogle Scholar
  68. 68.
    Garg SK, Smyth CP (1966) Microwave absorption and molecular structure in liquids. The three dielectric dispersion regions of the normal primary alcohols. J Phys Chem 69:1294–1301CrossRefGoogle Scholar
  69. 69.
    Philips LA, Webb SP, Clark JH (1985) High pressure studies of rotational reorientation dynamics: the role of dielectric friction. J Chem Phys 83:5810–5821.  https://doi.org/10.1063/1.449661 CrossRefGoogle Scholar
  70. 70.
    Bagchi B, Jana B (2010) Solvation dynamics in dipolar liquids. Chem Soc Rev 39:1936–1954.  https://doi.org/10.1039/b902048a CrossRefGoogle Scholar
  71. 71.
    Rosenthal SJ, Jimenez et al (1994). Solvation dynamics in methanol: experimental and molecular dynamics simulation studies. J Mol Liq 60:25–56.  https://doi.org/10.1016/0167-7322(94)00738-1
  72. 72.
    Simon JD (1988) Time-resolved studies of solvation in polar media. Acc Chem Res 21:128–134.  https://doi.org/10.1021/ar00147a006 CrossRefGoogle Scholar
  73. 73.
    Yevheniia S, François-Alexandre M et al (2017) Solvation dynamics and rotation of coumarin 153 in a new ionic liquid/molecular solvent mixture model: [BMIM][TFSI]/propylenecarbonate. J Mol Liq 226:48–55.  https://doi.org/10.1016/j.molliq.2016.10.00 CrossRefGoogle Scholar
  74. 74.
    Zhang XX, Liang M, Ernsting NP, Maroncelli M (2013) Complete solvation response of coumarin 153 in ionic liquids. J Phys Chem B 117:4291–4304.  https://doi.org/10.1021/jp305430a CrossRefGoogle Scholar
  75. 75.
    Dutta GB, Rama Krishna G (2001) Rotational dynamics of coumarins in nonassociative solvents: point dipole versus extended charge distribution models of dielectric friction. J Chem Phys 115:4732–4741.  https://doi.org/10.1063/1.1395563 CrossRefGoogle Scholar
  76. 76.
    Dutt GB (2000) Rotational dynamics of non-dipolar probes in alkane–alkanol mixtures: microscopic friction on hydrogen bonding and non-hydrogen bonding solute molecules. J Chem Phys 113:11154–11158CrossRefGoogle Scholar
  77. 77.
    Wiemers K, Kauffman JF (2000) Dielectric friction and rotational diffusion of hydrogen bonding solutes. J Phys Chem 104:451–457CrossRefGoogle Scholar
  78. 78.
    Dutt GB, Srivastavoy VJP, Sapre AV (1999) Rotational dynamics of pyrrolopyrrole derivatives in glycerol: a comparative study with alcohols. J Chem Phys 111:9705–9710CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P.G. Department of Physics, Sri Siddeshwara Govt.First Grade CollegeNaragundIndia
  2. 2.Department of Physics and Research CenterMaharani Science College for WomenBengaluruIndia
  3. 3.Department of Physics, Jnanabharathi campusBangalore UniversityBengaluruIndia

Personalised recommendations