Photoluminescence Properties of Dy3+ Activated CaWO4 Nanophosphors: a Potential Single Phase near White Light Emitter
- 17 Downloads
Abstract
A multicolor tunable CaWO4:xDy3+ nanophosphors have been synthesized via hydrothermal route. X-Ray Diffraction and Fourier transform infrared confirm the formation of CaWO4:Dy3+ nanophosphors. Transmission electron microscopy image and selected area electron diffraction (SAED) reveal the formation of nanosize and crystalline CaWO4:Dy3+. Dependence of energy transfer rate from WO42− to the activator (Dy3+) is observed from the photoluminescence studies. An enhancement of energy transfer efficiency from 36% to 90% is observed after annealing the as-prepared samples at 800 °C. The exchange type energy transfer mechanism is observed to be dominant in as-prepared samples while the electric dipole-dipole interaction is dominant in annealed samples. Variation in energy transfer rate from the host to Dy3+ activator ions leads to the tuning of color emission from this nanophosphor. A near white light emission could be achieved with 6 at.% Dy3+ doped CaWO4 annealed at 800 °C with x = 0.310 and y = 0.327.
Keywords
Luminescence Energy transfer Color tunable White light emissionNotes
Acknowledgments
Authors thank Science & Engineering Research Board (DST), New Delhi, for financial support (EMR Project No. EMR/2014/001211). T. Yaba thanks UGC, New Delhi for financial support. Authors thank SAIF, NEHU, Shillong for TEM facility.
References
- 1.Singh NS, Sahu NK, Bahadur D (2014) Multicolor tuning and white light emission from lanthanide doped YPVO4 nanorods: energy transfer studies. J Mater Chem C 2:548–555CrossRefGoogle Scholar
- 2.Pradal N, Chadeyron G, Potdevin A, Deschamps Y, Mahiou R (2013) Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions. J Eur Ceram Soc 33:1935–1945CrossRefGoogle Scholar
- 3.Khanna A, Dutta PS (2012) CaWO4: Eu3+, Dy3+, Tb3+ phosphor crystals for solid-state lighting applications. ECS Trans 41(37):39–48CrossRefGoogle Scholar
- 4.Varun S, Kalra M, Gandhi M (2015) White light emission through downconversion of terbium and europium doped CeF3 nanophosphors. J Fluoresc 25(5):1501–1505CrossRefGoogle Scholar
- 5.Smet PF, Korthout K, Haecke JEV, Poelman D (2007) Using rare earth doped thiosilicate phosphors in white light emitting LEDs: towards low colour temperature and high colour rendering. Mater Sci Eng B 146:264–268CrossRefGoogle Scholar
- 6.Kim JS, Jeon PE, Choi JC, Park HL, Muo SI, Kim GC (2004) Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor. Appl Phys Lett 84(15):2931–2933CrossRefGoogle Scholar
- 7.Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: energy transfer studies. J Appl Phys 123:124303CrossRefGoogle Scholar
- 8.Sato Y, Takahashi N, Sato S (1996) Full-color fluorescent display devices using a near-UV light-emitting diode. Jpn J Appl Phys 35:838–839CrossRefGoogle Scholar
- 9.Shang M, Li C, Lin J (2014) How to produce white light in a single-phase host? Chem Soc Rev 43:1372–1386CrossRefGoogle Scholar
- 10.Liu B, Kong L, Shi C (2007) White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. J Lumin 122-123:121–124CrossRefGoogle Scholar
- 11.Liu B, Shi C, Qi Z (2005) Potential white-light long-lasting phosphor: Dy3+ −doped aluminate. Appl Phys Lett 86:191111CrossRefGoogle Scholar
- 12.Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R 71:1–34CrossRefGoogle Scholar
- 13.Nair GB, Dhoble SJ (2017) White light emitting MZr4(PO4)6:Dy3+ (M = ca, Sr, Ba) phosphors for WLEDs. J Fluoresc 27(2):575–585CrossRefGoogle Scholar
- 14.Tanaka K, Miyajima T, Shivai N, Zhang Q, Nakata R (1995) Laser photochemical ablation of CdWO4 studied with the time-of-flight mass spectrometric technique. J Appl Phys 77(12):6581–6587CrossRefGoogle Scholar
- 15.Wang H, Medina FD, Zhou YD, Zhang QN (1992) Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals. Phys Rev B 45(18):10356–10362CrossRefGoogle Scholar
- 16.Basu S, Naidu BS, Viswanadh B, Sudarson V, Jha SN, Bhattacharyya D, Vatsa RK (2014) Nature of WO4 tetrahedra in blue light emitting CaWO4 probed through the EXAFS technique. RSC Adv 4:15606–15612CrossRefGoogle Scholar
- 17.Grasser R, Scharmann A, Strack KR (1982) On the intrinsic nature of the blue luminescence in CaWO4. J Lumin 27:263–272CrossRefGoogle Scholar
- 18.Mv S, Ciemniak C, Erb A, Fv F, Gütlein A, Lanfranchi J-C, Lepelmeier J, Münster A, Potzel W, Roth S, Strauss R, Thalhammer U, Wawoczny S, Willers M, Zöller A (2012) Influence of annealing on the optical and scintillation properties of CaWO4 single crystals. Opt Mater 34:1843–1848CrossRefGoogle Scholar
- 19.Kang F, Peng M (2014) A new study on the energy transfer in the color-tunable phosphor CaWO4:bi. Dalton Trans 43:277–284CrossRefGoogle Scholar
- 20.Treadaway MJ, Powell RC (1974) Luminescence of calcium tungstate crystals. J Chem Phys 61(10):4003–4011CrossRefGoogle Scholar
- 21.Feldmann C, Justel T, Ronda CR, Schmidt PJ (2003) Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater 13(7):511–516CrossRefGoogle Scholar
- 22.Hoppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582CrossRefGoogle Scholar
- 23.Treadaway MJ, Powell RC (1975) Energy transfer in samarium-doped calcium tungstate crystals. Phys Rev B 11(2):862–874CrossRefGoogle Scholar
- 24.Su Y, Li L, Li G (2009) Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and ln3+ (Ln = Tb, Sm, Dy, Eu). J Mater Chem 19:2316–2322CrossRefGoogle Scholar
- 25.Du P, Bharat LK, Guan XY, Yu JS (2015) Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors. J Appl Phys 117:083112CrossRefGoogle Scholar
- 26.Sharma KG, Singh NS, Devi YR, Singh NR, Singh SD (2013) Effects of annealing on luminescence of CaWO4:Eu3+ nanoparticles and its thermoluminescence study. J Alloys Compd 556:94–101CrossRefGoogle Scholar
- 27.Liao J, Qiu B, Wen H, You W (2009) Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Opt Mater 31:1513–1516CrossRefGoogle Scholar
- 28.Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286–292CrossRefGoogle Scholar
- 29.Zhang Y, Gong W, Yu J, Pang H, Song Q, Ning G (2015) A new single-phase white-light-emitting CaWO4:Dy3+ phosphor: synthesis, luminescence and energy transfer. RSC Adv 5:62527–62533CrossRefGoogle Scholar
- 30.Xie W, Liu G, Dong X, Wang J, Yu W (2016) Doping Eu3+/Sm3+ into CaWO4:Tm3+, Dy3+ phosphors and their luminescent properties, tunable color and energy transfer. RSC Adv 6:26239–26246CrossRefGoogle Scholar
- 31.Sharma KG, Singh NR (2013) Synthesis and luminescence properties of CaMO4:Dy3+ (M = W, Mo) nanoparticles prepared via an ethylene glycol route. New J Chem 37:2784–2791CrossRefGoogle Scholar
- 32.Du C, Lang F, Su Y, Liu Z (2013) Low temperature nanocasting synthesis of lanthanide ions (ln = Tb, Eu, Dy) doped CaWO4 mesoporous structure with efficiently luminescent properties. J Colloid Interface Sci 394:94–99CrossRefGoogle Scholar
- 33.Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
- 34.Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
- 35.Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905CrossRefGoogle Scholar
- 36.Dhumale VA, Gangwar RK, Datar SS, Sharma RB (2012) Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of Ph. Mater. Express 2(4):311–318CrossRefGoogle Scholar
- 37.Omkaram I, Buddhudu S (2009) Photoluminescence properties of MgAl2O4:Dy3+ powder phosphor. Opt Mater 32:8–11CrossRefGoogle Scholar
- 38.Singh NS, Ningthoujam RS, Luwang MN, Singh SD, Vasta RK (2009) Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles: concentration and annealing effects. Chem Phys Lett 480:237–242CrossRefGoogle Scholar
- 39.Nayar R, Tamboli S, Sahu AK, Nayar V, Dhoble SJ (2017) Synthesis and luminescence characterization of LaBO3:Dy3+ phosphor for stress sensing application. J Fluoresc 27(1):251–261CrossRefGoogle Scholar
- 40.Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm 14:853–868CrossRefGoogle Scholar
- 41.Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Chang Z, Lin J (2009) One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem 19:2737–2746CrossRefGoogle Scholar
- 42.Tian Y, Chen B, Tian B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J, Zheng Y, Yu T, Huang L, Meng Q (2011) Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor. J Alloys Compd 509:6096–6101CrossRefGoogle Scholar
- 43.Jiao M, Jia Y, Lu W, Lv W, Zhao Q, Shao B, You H (2014) Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs. J Mater Chem C 2:90–97CrossRefGoogle Scholar
- 44.Zhang Q, Meng Q, Sun W (2013) The concentration dependence of luminescent properties for Eu3+ doped CaWO4 micron spherical phosphors. Opt Mater 35:915–922CrossRefGoogle Scholar
- 45.Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
- 46.Blasse G, Grabmaier BC (1994) Luminescent Materials, 1st edn. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
- 47.Smith T, Guild J (1931–32) The C.I.E. colorimetric standards and their use. Trans. Opt. Soc 33:73–134Google Scholar