Journal of Fluorescence

, Volume 29, Issue 1, pp 211–219 | Cite as

An Ultrasensitive Detection Platform for Mercury Ions Speciation in Water Using Procaine Hydrochloride Ion Pair Coupled Extractive Spectrofluorimetry

  • Dyab A. Al-Eryani
  • Waqas Ahmad
  • Gharam I. Mohammad
  • Faten M. Ali Zainy
  • Hassan Alwael
  • Saleh O. Bahaffi
  • Mohammad S. El-ShahawiEmail author


A simple extractive spectrofluorimetric strategy for trace determination of mercury(II) ions in water employing procaine hydrochloride (PQ+) as an ion pairing fluorescent tagging reagent has been established. The method was based upon the extraction of PQ+ from aqueous iodide media onto dichloromethane as a ternary complex ion associate [(PQ+)2.(HgI4)2−] at pH 9.0–10.0 with subsequent quenching at λex/em = 268/333 nm. The developed strategy exhibited a linear range 20–140 nM with a lower limit of detection (LOD) 6.1 nM, respectively. Intra and inter-day laboratory accuracy and precision for trace analysis of mercury(II) ions in water were performed. Complexed mercury(II) species in real water samples were evaluated along with chemical speciation and successful comparison with most of the reported methods. The method was validated by standard inductively coupled plasma-optical emission spectrometry (ICP-OES) method in terms of student’s t- and F tests at 95% confidence interval. The method offers rapidity, selectivity, cost-effectiveness, robustness, and ruggedness.

Graphical Abstract

Schematic illustration of the proposed sensing mechanism for mercury(II).


Spectrofluorimetry Mercury(II) determination Fluorescence probe Procaine hydrochloride Quenching Ternary complex ion associate 



  1. 1.
    World health organization (WHO) (2011) Guidelines for drinking water, 4th edn, Geneva 27, SwitzerlandGoogle Scholar
  2. 2.
    Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480CrossRefGoogle Scholar
  3. 3.
    Elinder CG, Gerhardsson L, Oberdoerster G, Biological monitoring of toxic metals, 1988, N.Y. 10013 New YorkGoogle Scholar
  4. 4.
    Lin YH, Wu T, Lin YW (2018) Fluorescence sensing of mercury(II) and melamine in aqueous solution through microwave-assisted synthesis of egg-white-protected gold nanoculstersGoogle Scholar
  5. 5.
    Lin YH, Tseng WL (2010) Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem 82:9194–9200CrossRefGoogle Scholar
  6. 6.
    Wen D, Deng L, Guo SJ, Dong SJ (2011) Self-powered sensor for trace Hg2+ detection. Anal Chem 83:3968–3972CrossRefGoogle Scholar
  7. 7.
    Ghaedi M, Fathi MR, Shokrollahi A, Shajarat F (2006) Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Anal Lett 39:1171–1185CrossRefGoogle Scholar
  8. 8.
    Turker AR, Cabuk D, Yalcinkaya O (2013) Preconcentration, speciation spectrometry, and determination of mercury by solid phase extraction with cold vapor atomic absorption. Anal Lett 46:1155–1170CrossRefGoogle Scholar
  9. 9.
    Silva TS, Conte C, Santos JO, Simas ES, Freitas SC, Raices RLS, Quiterio SL (2017) Spectrometric method for determination of inorganic contaminants (arsenic, cadmium, lead and mercury) in smooth weakfish fish. LWT - Food Sci Technol 76:87–94CrossRefGoogle Scholar
  10. 10.
    Oehmen A, Vergel D, Fradinho J, Reis MMA, Crespo JG, Velizarov S (2014) Mercury removal from water streams through the ion exchange membrane bioreactor concept. J Hazard Mater 264:65–70CrossRefGoogle Scholar
  11. 11.
    Biester H, Schuhmacher P, Muèller (2000) G effectiveness of mossy tin filters to remove mercury from aqueous solution by hg(II) reduction and hg(0) amalgamation, wat. Res 34:2031–2036Google Scholar
  12. 12.
    Huttenloch P, Roehl KE, Czurda K (2003) Use of copper shavings to remove mercury from contaminated groundwater or wastewater by amalgamation. Environ Sci Technol 37:4269–4273CrossRefGoogle Scholar
  13. 13.
    Chojnacki A, Chojnacka K, Hoffman J, Gorecki H (2004) The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Miner Eng 17:933–937CrossRefGoogle Scholar
  14. 14.
    Evangelista SM, DeOliveira E, Castro GR, Zara LF, Prado AGS (2007) Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surf Sci 601:2194–2202CrossRefGoogle Scholar
  15. 15.
    Lopes CB, Otero M, Coimbra J, Pereira E, Rocha J, Lin Z, Duarte A (2007) Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Microporous Mesoporous Mater 103:325–332CrossRefGoogle Scholar
  16. 16.
    Fábrega FM, Mansur MB (2007) Liquid–liquid extraction of mercury (II) from hydrochloric acid solutions by aliquat 336. Hydrometallurgy 87:83–90CrossRefGoogle Scholar
  17. 17.
    Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B (2017) Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: a review. Sci Total Environ 574:1379–1388CrossRefGoogle Scholar
  18. 18.
    Liu Y, Wang X, Wu H (2017) Reusable DNA-functionalized-graphene for ultrasensitive mercury (II) detection and removal. Biosens Bioelectron 87:129–135CrossRefGoogle Scholar
  19. 19.
    Borthakur P, Darabdhara G, Das MR, Boukherroub R, Szunerits S (2017) Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of hg(II) ion in aqueous medium, Sens. Actuators B-Chem 244:684–692CrossRefGoogle Scholar
  20. 20.
    Saad A, Bakas I, Piquemal JY, Nowakc S, Abderrabba M, Chehimi MM (2016) Mesoporous silica/polyacrylamide composite: preparation by UV-graft photopolymerization, characterization and use as hg(II) adsorbent. Appl Surf Sci 367:181–189CrossRefGoogle Scholar
  21. 21.
    Palanisamy S, Thangavelu K, Chen SM, Velusamy V, Chang MH, Chen TW, Al-Hemaid FMA, Ali MA, Ramaraj SK (2017) Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B-Chem. 243:888–894CrossRefGoogle Scholar
  22. 22.
    Kim JH, Noh JY, Hwang IH, Lee JJ, Kim C (2013) NBD-based selective colorimetric and fluorescent chemosensor for Hg2+. Tetrahedron Lett 54:4001–4005CrossRefGoogle Scholar
  23. 23.
    Ozdemir M (2016) A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. J Photochem Photobiol A Chem 318:7–13CrossRefGoogle Scholar
  24. 24.
    Niu Q, Wu X, Zhang S, Li T, Cui Y, Li X (2016) A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative. Spectrochim Acta A 153:143–146CrossRefGoogle Scholar
  25. 25.
    Lee S, Rao BA, Son YA (2015) A highly selective fluorescent chemosensor for Hg2+ based on a squaraine–bis(rhodamine-B) derivative: part II. Sens Actuators B-Chem 210:519–532CrossRefGoogle Scholar
  26. 26.
    Dong Z, Tian X, Chen Y, Hou J, Guo Y, Sun J, Ma J (2013) A highly selective fluorescent chemosensor for Hg2+ based on rhodamine B and its application as a molecular logic gate. Dyes Pigments 97:324–329CrossRefGoogle Scholar
  27. 27.
    Tang J, Huang Y, Zhang C, Liu H, Tang D (2016) DNA-based electrochemical determination of mercury(II) by exploiting the catalytic formation of gold amalgam and of silver nanoparticles. Microchim Acta 183:1805–1812CrossRefGoogle Scholar
  28. 28.
    Brasca R, Onaindia MC, Goicoechea HC, Peña AM, Culzoni MJ (2016) Highly selective and ultrasensitive turn-on luminescence chemosensor for mercury (II) determination based on the rhodamine 6G derivative FC1 and au nanoparticles. Sensors 16:1652–1664CrossRefGoogle Scholar
  29. 29.
    Le VS, Jeong JE, HT HJ, Woo LHY (2016) An ionic 1,4-bis(styryl)benzene-based fluorescent probe for mercury(II) detection in water via deprotection of the thioacetal group. Sensors 16(2):2082–2093CrossRefGoogle Scholar
  30. 30.
    Chen Y, Yao L, Deng Y, Pan D, Ogabiela E, Cao J, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta 182:2147–2154CrossRefGoogle Scholar
  31. 31.
    Oskoei YM, Bagheri N, Hassanzadeh J (2015) Ultrasensitive determination of mercury(II) using a chemiluminescence system composed of permanganate, rhodamine B and gold nanoprisms. Microchim Acta 182:1635–1642CrossRefGoogle Scholar
  32. 32.
    Fashi A, Yaftian MR, Zamani A (2017) Electromembrane extraction-preconcentration followed by microvolume UV–vis spectrophotometric determination of mercury in water and fish samples. Food Chem 221:714–720CrossRefGoogle Scholar
  33. 33.
    Narayanana KB, Han SS (2017) Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized ag/AgCl nanoparticles. Carbohyde Polym 160:90–96CrossRefGoogle Scholar
  34. 34.
    Cheng L, Wei B, He LL, Mao L, Zhang J, Ceng J, Kong D, Chen C, Cui H, Hong N, Fan H (2017) “Off-on”switching electrochemiluminescence biosensor for mercury(II) detection based on molecular recognition technology. Anal Biochem 518:46–52CrossRefGoogle Scholar
  35. 35.
    Brent RN, Winesa H, Luther J, Irving N, Collins J, Drake BL (2017) Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils. J Environ Chem Eng 5:768–775CrossRefGoogle Scholar
  36. 36.
    Sharma VV, Tonelli D, Guadagnini L, Gazzano M (2017) Copper-cobalt hexacyanoferrate modified glassy carbon electrode foran indirect electrochemical determination of mercury. Sens Actuators B-Chem 238:9–15CrossRefGoogle Scholar
  37. 37.
    Li XQ, Liang HQ, Cao Z, Xiao Q, Xiao ZL, Song LB, Chen D, Wang FL (2017) Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled au substrate and its recognition mechanism. Mater Sci Eng C 72:26–33CrossRefGoogle Scholar
  38. 38.
    Vogel AI (1966) Quantitative inorganic analysis, 3rd edn. Longmans Group Ltd., EnglandGoogle Scholar
  39. 39.
    Valeur B (2002) Molecular fluorescence principles and applications. Weinheim, Federal Republic of Germany, WILEY-VCH Verlag GmbHGoogle Scholar
  40. 40.
    El-Shahawi MS, Al Khateeb LA (2012) Spectrofluorometric determination and chemical speciation of trace concentrations of tungsten species in water using the ion pairing reagent procaine hydrochloride. Talanta 88:587–592CrossRefGoogle Scholar
  41. 41.
    Soni S, Pal A (2016) Spectroscopic studies on host–guest interactions of a- and b-cyclodextrin with lidocaine hydrochloride and procaine hydrochloride. J Solut Chem 45:665–674CrossRefGoogle Scholar
  42. 42.
    Maafi M, Laassis B, Aaron JJ (1995) Photochemically induced fluorescence investigation of a β-Cyclodextrin: azure a inclusion complex and determination of analytical parameters. J Inc Phen Mol Recog Chem 22:235–247CrossRefGoogle Scholar
  43. 43.
    Abdel-Shafi AA, Al-Shihry SS (2009) Fluorescence enhancement of 1-napthol-5-sulfonate by forming inclusion complex with β-cyclodextrin in aqueous solution. Spectrochim Acta A 72:533–537CrossRefGoogle Scholar
  44. 44.
    Al-Shihry SS (2005) Spectroscopic studies of inclusion complexes of 1-naphthol-4-sulfonate with β-cyclodextrin in aqueous solution. Spectrochim Acta A 61:2439–2443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dyab A. Al-Eryani
    • 1
  • Waqas Ahmad
    • 1
  • Gharam I. Mohammad
    • 1
    • 2
  • Faten M. Ali Zainy
    • 3
  • Hassan Alwael
    • 1
  • Saleh O. Bahaffi
    • 1
  • Mohammad S. El-Shahawi
    • 1
    • 4
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Chemistry, Faculty of Applied ScienceUmm AL-Qura UniversityMakkahSaudi Arabia
  3. 3.Department of Chemistry, Faculty of ScienceJeddah UniversityJeddahSaudi Arabia
  4. 4.Department of Chemistry, Faculty of ScienceDamiatta UniversityDamiattaEgypt

Personalised recommendations