Journal of Fluorescence

, Volume 29, Issue 1, pp 165–176 | Cite as

Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System

  • Vikash Kumar Sonu
  • Sivaprasad MitraEmail author


Surface modified colloidal gold (Au) and silver (Ag) nanoparticles (NPs) were used as efficient quenchers of luminol (LH2) fluorescence either in homogeneous aqueous medium or its noncovalent assembly with bovine serum albumin (BSA). The mechanism as well as the extent of fluorescence quenching was found to be strongly dependent on the nature of the nanoparticles. While simple static type fluorescence quenching mechanism was perceived with AuNP, a more complex protocol involving quenching sphere model was envisaged for AgNP quenching. Nevertheless, the magnitude of Stern-Volmer (SV) quenching constant (KSV ~ 108–1010 M−1) was calculated to be ca. 104 times more for surface quoted NPs in comparison with BSA–NP bioconjugates system. On the other hand, a highly efficient (E ≈ 95%) energy transfer (ET) process was predicted for LH2 captured in the hydrophobic assembly with BSA in presence of AgNP as an acceptor. The ET efficiency is critically dependent on the concentration of BSA and nicely correlated with the extent of NP surface coverage. However, fluorescence quenching on AuNP surface is relatively less responsive towards protein concentration, primarily due to the difference in surface activity as well as the mode of interaction of the protein with NPs.

Graphical Abstract

Energy transfer from excited luminol to metal nanoparticles is strongly modulated in presence of serum albumins


Luminol Metal nanoparticles Fluorescence quenching Bovine serum albumin Energy transfer Bionanosensors 



The authros acknowledge the support from the Department of Science & Technology (DST), Govt. of India to the Chemistry Department through FIST program (SR/FST/CSI-194/2008).

Supplementary material

10895_2018_2324_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1502 kb)


  1. 1.
    Arruda-Vasconcelos R, Chantre RLGF, Lopes RSC, Lopes CC, Barbosa-Ribeiro M, Gomes BPFA (2017) Application of forensic luminol for blood detection in endodontic files. Rev Odontol UNESP 46:227–231. Google Scholar
  2. 2.
    Li X, Liu H, He X, Song Z (2010) Determination of cytochrome c in human serum and pharmaceutical injections using flow injection chemiluminescence. Appl Biochem Biotechnol 160(4):1065–1073Google Scholar
  3. 3.
    Tan X, Song Z (2014) Human saliva-based quantitative monitoring of clarithromycin by flow injection chemiluminescence analysis: a pharmacokinetic study. Appl Biochem Biotechnol 172(3):1320–1331Google Scholar
  4. 4.
    Liu C, Li B (2011) Silver nanoparticle-initiated chemiluminescence reaction of luminol–AgNO3 and its analytical application. Anal Bioanal Chem 401(1):229–235Google Scholar
  5. 5.
    Gross AM, Harris KA, Kaldun GL (1999) The effect of luminol on presumptive tests and DNA analysis using the polymerase chain reaction. J Forensic Sci 44(4):837–840Google Scholar
  6. 6.
    Khan P, Idrees D, Moxley MA, Corbett JA, Ahmad F, von Figura G, Sly WS, Waheed A, Hassan MI (2014) Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 173(2):333–355Google Scholar
  7. 7.
    Karube I, Yano K, Sasaki S, Nomura Y, Ikebukuro K (2006) Biosensors for environmental monitoring. Ann N Y Acad Sci 864:23–36Google Scholar
  8. 8.
    Wendler J, Hoffmann A, Gross G, Weich HA, Bilitewski U (2005) Development of an enzyme-linked immunoreceptor assay (ELIRA) for quantification of the biological activity of recombinant human bone morphogenetic protein-2. J Biotechnol 119(4):425–435Google Scholar
  9. 9.
    Stockwell BR, Haggarty SJ, Schreiber SL (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem Biol 6(2):71–83Google Scholar
  10. 10.
    Wang Z, Duan N, Li J, Ye J, Ma S, Le G (2011) Ultrasensitive chemiluminescent immunoassay of Salmonella with silver enhancement of nanogold labels. Luminescence 26(2):136–141Google Scholar
  11. 11.
    Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193(2–3):89–96Google Scholar
  12. 12.
    Chen H, Gao F, He R, Cui D (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315(1):158–163Google Scholar
  13. 13.
    Karabchevsky A, Mosayyebi A, Kavokin AV (2016) Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles. Light Sci Appl 5:e16164.
  14. 14.
    Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22(2):77–87Google Scholar
  15. 15.
    Li SF, Zhang XM, Du WX, Ni YH, Wei XW (2008) Chemiluminescence reactions of a luminol system catalyzed by ZnO nanoparticles. J Phys Chem C 113(3):1046–1051Google Scholar
  16. 16.
    Triantis TM, Papadopoulos K, Yannakopoulou E, Dimotikali D, Hrbáč J, Zbořil R (2008) Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides. Chem Eng J 144(3):483–488Google Scholar
  17. 17.
    He S, Shi W, Zhang X, Li J, Huang Y (2010) β−cyclodextrins-based inclusion complexes of CoFe2O4magnetic nanoparticles as catalyst for the luminol chemiluminescence system and their applications in hydrogen peroxide detection. Talanta 82(1):377–383Google Scholar
  18. 18.
    Li B, Wang D, Lv J, Zhang Z (2006) Flow-injection chemiluminescence simultaneous determination of cobalt(II) and copper(II) using partial least squares calibration. Talanta 69(1):160–165Google Scholar
  19. 19.
    Du J, Li Y, Lu J (2001) Investigation on the chemiluminescence reaction of luminol–H2O2–S2−/R–SH system. Anal Chim Acta 448(1–2):79–83Google Scholar
  20. 20.
    Karatani H et al (1987) Microenvironmental effects of water-soluble polymers on the chemiluminescence of luminol and its analogs. Bull Chem Soc Jpn 60(6):2023–2029Google Scholar
  21. 21.
    Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol–hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610(2):243–248Google Scholar
  22. 22.
    Tsogas GZ, Giokas DL, Vlessidis AG (2014) Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated Preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal Chem 86(7):3484–3492Google Scholar
  23. 23.
    Huang X, Ren J (2011) Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Anal Chim Acta 686(1–2):115–120Google Scholar
  24. 24.
    Huang X, Ren J (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. Trends Anal Chem 40:77–89Google Scholar
  25. 25.
    Wang W, Xiong T, Cui H (2008) Fluorescence and electrochemiluminescence of luminol-reduced gold nanoparticles: photostability and platform effect. Langmuir 24(6):2826–2833Google Scholar
  26. 26.
    Komatsu T, Ohira M, Yamada M, Suzuki S (1986) Analytical use of luminescence induced ultrasonically in solution. I. Sonic chemiluminescence of luminol for determination of cobalt(II) at sub-pg levels by flow injection and continuous flow methods. Bull Chem Soc Jpn 59(6):1849–1855Google Scholar
  27. 27.
    Niemeyer CM et al (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158Google Scholar
  28. 28.
    Rosi NL, Mirkin CA (2005) Nanostructures in Biodiagnostics. Chem Rev 105(4):1547–1562Google Scholar
  29. 29.
    Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511Google Scholar
  30. 30.
    Upadhyayula VK et al (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18Google Scholar
  31. 31.
    Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62(3):316–328Google Scholar
  32. 32.
    Chatterjee S, Lee JB, Valappil NV, Luo D, Menon VM (2011) Investigating the distance limit of a metal nanoparticle based spectroscopic ruler. Biomed Opt Express 2(6):1727–1733Google Scholar
  33. 33.
    Hao C, Xu G, Feng Y, Lu L, Sun W, Sun R (2017) Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 184:191–197Google Scholar
  34. 34.
    Moyon NS, Chandra AK, Mitra S (2010) Effect of solvent hydrogen bonding on excited-state properties of Luminol: a combined fluorescence and DFT study. J Phys Chem A 114(1):60–67Google Scholar
  35. 35.
    Moyon NS, Mitra S (2011) Luminol fluorescence quenching in biomimicking environments: sequestration of fluorophore in hydrophobic domain. J Phys Chem B 115(33):10163–10172Google Scholar
  36. 36.
    Moyon NS, Mitra S (2010) On the interaction of luminol with human serum albumin: nature and thermodynamics of ligand binding. Chem Phys Lett 498(1–3):178–183Google Scholar
  37. 37.
    Sonu VK, Islam MM, Rohman MA, Mitra S (2016) Lysozyme binding ability toward psychoactive stimulant drugs: modulatory effect of colloidal metal nanoparticles. Colloids Surf B 146(1):514–522Google Scholar
  38. 38.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862Google Scholar
  39. 39.
    Sonu VK, Rajkumar I, Bhattacharjee K, Joshi SR, Mitra S (2018) Interaction of caffeine and sulfadiazine with lysozyme adsorbed at colloidal metal nanoparticle interface: influence on drug transport ability and antibacterial activity. J Biomol Struct Dyn. In press.
  40. 40.
    Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Anal Chem 79(11):4215–4221Google Scholar
  41. 41.
    Phukan S, Mitra S (2012) Fluorescence behavior of ethidium bromide in homogeneous solvents and in presence of bile acid hosts. J Photochem Photobiol A Chem 244:9–17Google Scholar
  42. 42.
    Islam MM, Sonu VK, Gashnga PM, Moyon NS, Mitra S (2016) Caffeine and sulfadiazine interact differently with human serum albumin: a combined fluorescence and molecular docking study. Spectrochim Acta A Mol Biomol Spectrosc 152:23–33Google Scholar
  43. 43.
    Valeur B, Berberan-Santos MN (2012) In: Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH, Verlag GmbHGoogle Scholar
  44. 44.
    Silby RJ, Alberty RA (2002) In: Physical chemistry, 3rd edn. John Wiley & Sons (Asia) Pte. Ltd. SingaporeGoogle Scholar
  45. 45.
    Bevington PR, Robinson DK (2003) In: data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, NYGoogle Scholar
  46. 46.
    Lakowicz JR et al (2006) In: Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore, Ch. 4Google Scholar
  47. 47.
    Eftink MR, Ghiron CA (1976) Fluorescence quenching of indole and model micelle systems. J Phys Chem 80(5):486–493Google Scholar
  48. 48.
    Jin B, Min KS, Han SW, Kim SK (2009) DNA-binding geometry dependent energy transfer from 4′,6-diamidino-2-phenylindole to cationic porphyrins. Biophys Chem 144(1–2):38–45Google Scholar
  49. 49.
    Castanho MARB, Prieto MJE (1998) Fluorescence quenching data interpretation in biological systems: the use of microscopic models for data analysis and interpretation of complex systems. Biochim Biophys Acta 1373:1–16Google Scholar
  50. 50.
    Airinei A, Tigoianu RI, Rusu E, Dorohoi DO (2011) Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct 6(3):1265–1272Google Scholar
  51. 51.
    Su Y, Xie Y, Hou X, Lv Y (2014) Recent advances in analytical applications of Nanomaterials in liquid-phase Chemiluminescence. Appl Spectrosc Rev 49(3):201–232Google Scholar
  52. 52.
    Chatterjee T, Mukherjee D, Dey S, Pal A, Hoque KM, Chakrabarti P (2011) Accessory cholera enterotoxin, ace, from vibrio cholerae: structure, unfolding, and virstatin binding. Biochemistry 50(14):2962–2972Google Scholar
  53. 53.
    Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11:26Google Scholar
  54. 54.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149Google Scholar
  55. 55.
    Ansar SM, Perera GS, Gomez P, Salomon G, Vasquez ES, Chu IW, Zou S, Pittman CU Jr, Walters KB, Zhang D (2013) Mechanistic study of continuous reactive aromatic organothiol adsorption onto silver nanoparticles. J Phys Chem C 117(51):27146–27154Google Scholar
  56. 56.
    Gadogbe M, Ansar SM, Chu IW, Zou S, Zhang D (2014) Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30:11520–11527Google Scholar
  57. 57.
    Herrera GM, Padilla AC, Hernandez-Rivera SP (2013) Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials 3(1):158–172Google Scholar
  58. 58.
    Ghosh D, Chattopadhyay N (2013) Gold nanoparticles: acceptors for efficient energy transfer from the photoexcited fluorophores. Optics and Photonics Journal 3:18–26. Google Scholar
  59. 59.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(22):6961–6968Google Scholar
  60. 60.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609Google Scholar
  61. 61.
    Andrews DL, Demidov AD (eds) (1999) Resonance energy transfer. Wiley, EnglandGoogle Scholar
  62. 62.
    Bogdan M, Pirnau A, Floare C, Bugeac C (2008) Binding interaction of indomethacin with human serum albumin. J Pharm Biomed Anal 47(4–5):981–984Google Scholar
  63. 63.
    Mitchell JA, Whitfield JH, Zhang WH, Henneberger C, Janovjak H, O’Mara ML, Jackson CJ (2016) Rangefinder: a semisynthetic FRET sensor design algorithm. ACS Sensors 1(11):1286–1290Google Scholar
  64. 64.
    Ghosh D, Girigoswami A, Chattopadhyay N (2012) Superquenching of coumarin 153 by gold nanoparticles. J Photochem Photobiol A Chem 242:44–50Google Scholar
  65. 65.
    Navarro JR, Werts MH (2013) Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138:583–592Google Scholar
  66. 66.
    Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580Google Scholar
  67. 67.
    Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2009) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4(1):365–379Google Scholar
  68. 68.
    Boulos SP, Davis TA, Yang JA, Lohse SE, Alkilany AM, Holland LA, Murphy CJ (2013) Nanoparticle–protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 29(48):14984–14996Google Scholar
  69. 69.
    Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20):9303–9307Google Scholar
  70. 70.
    De-Llanos R, Sánchez-Cortes S, Domingo C, García-Ramos JV, Sevilla P (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115(25):12419–12429Google Scholar
  71. 71.
    Dasgupta N, Ranjan S, Patra D, Srivastava P, Kumar A, Ramalingam C (2016) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111Google Scholar
  72. 72.
    Wang G, Lu Y, Hou H, Liu Y (2017) Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Adv 7:9393–9401Google Scholar
  73. 73.
    Mariam J, Dongre PM, Kothari DC (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21:2193–2199Google Scholar
  74. 74.
    Yu S, Perálvarez-Marín A, Minelli C, Faraudo J, Roig A, Laromaine A (2016) Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins. Nanoscale 8:14393–14405Google Scholar
  75. 75.
    Rezwan K, Meier LP, Rezwan M, Vörös J, Textor M, Gauckler LJ (2004) Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV−Vis measurements. Langmuir 20(23):10055–10061Google Scholar
  76. 76.
    Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc 128(16):5462–5467Google Scholar
  77. 77.
    Sen T, Sadhu S, Patra A (2007) Surface energy transfer from rhodamine 6G to gold nanoparticles: a spectroscopic ruler. Appl Phys Lett 91(4):043104Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Advanced Studies, Department of ChemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations