Advertisement

Synthesis and Studies of Fluorescein Based Derivatives for their Optical Properties, Urease Inhibition and Molecular Docking

  • Prasad G. Mahajan
  • Nilam C. Dige
  • Balasaheb D. Vanjare
  • Hussain Raza
  • Mubashir Hassan
  • Sung-Yum Seo
  • Seong-Karp Hong
  • Ki Hwan Lee
ORIGINAL ARTICLE

Abstract

Herein, we design and synthesized new fluorescein based derivatives by insitu formation of fluorescein ester and further treated with corresponding hydrazide and amine to yield respective compounds i.e. FB1, FB2, FB3 and FB4. The spectral purity and characterization was done by using IR, NMR and Mass spectroscopies. The synthesized derivatives were examined for their photophysical properties by using variety of organic solvents and results were discussed in details. The structural diversity of synthesized compounds motivate us to evaluate these compounds for urease inhibition. The compound FB3 (IC50 = 0.0456 μM) shows 100 fold more active against Jack bean urease than standard drug thiourea (IC50 = 4.7455 μM). Other synthesized compounds showed potent activity. Free radical percentage scavenging assay further supported the capacity of compounds to urease inhibition. While, molecular docking simulations helps to examine the molecular interactions of active compounds FB1, FB2, FB3 and FB4 within the binding site of urease enzyme.

Keywords

Synthesis Fluorescein derivatives Optical properties Urease inhibitors Molecular docking 

Notes

Acknowledgments

This work was supported by a grant from Mid-Career Researcher Program (NRF- 2016R1A2B4016552) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP).

Supplementary material

10895_2018_2291_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1.37 mb)

References

  1. 1.
    Mondal SB, Gao S, Zhu N, Liang R, Achilefu S (2014) Chapter five - real-time fluorescence image-guided oncologic surgery. Adv Cancer Res 124:171–211CrossRefGoogle Scholar
  2. 2.
    Moore GE (1947) Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106:130–131CrossRefGoogle Scholar
  3. 3.
    Efron N (2012) Chapter 16 - corneal staining, Contact Lens Complications (Third Edition) 155–166CrossRefGoogle Scholar
  4. 4.
    Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium, technical note. J Neurosurg 99:597–603CrossRefGoogle Scholar
  5. 5.
    Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery: the localization of brain tumors. J Neurosurg 5:392–398CrossRefGoogle Scholar
  6. 6.
    Grimm JB, Heckman LM, Lavis LD (2013) Chapter one - the chemistry of small-molecule fluorogenic probes. Prog Mol Biol Transl Sci 113:1–34CrossRefGoogle Scholar
  7. 7.
    Brush CK (1991) Fluorescein labelled phosphoramidites, US Patent 5,583,236Google Scholar
  8. 8.
    Folli S, Wagnieres G, Pelegrin A, Calmes JM, Braichotte D, Buchegger F (1992) Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc Natl Acad Sci U S A 89:7973–7977CrossRefGoogle Scholar
  9. 9.
    Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319CrossRefGoogle Scholar
  10. 10.
    Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins Struct Funct Genet, 28:72–82CrossRefGoogle Scholar
  11. 11.
    Krajewska B, Ureases I (2009) Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym 59:9–21CrossRefGoogle Scholar
  12. 12.
    Macegoniuk K, Grela E, Palus J, Rudzinska-Szostak E, Grabowiecka A, Biernat M, Berlicki Ł (2016) 1,2-Benzisoselenazol-3(2H)-one derivatives as a new class of bacterial urease inhibitors. J Med Chem 59:8125–8133CrossRefGoogle Scholar
  13. 13.
    Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108PubMedPubMedCentralGoogle Scholar
  15. 15.
    Follmer C (2010) Ureases as a target for the treatment of gastric and urinary infections. J Clin Pathol 63:424–430CrossRefGoogle Scholar
  16. 16.
    Fatima A, Pereira C, Dau C, Olímpio G, Oliveira BGF, Franco LL, Silva PHC (2018) Schiff bases and their metal complexes as urease inhibitors – a brief review. J Adv Res.  https://doi.org/10.1016/j.jare.2018.03.007 CrossRefGoogle Scholar
  17. 17.
    Amtul Z, Siddiqui RA, Choudhary MI (2002) Chemistry and mechanism of urease inhibition. Curr Med Chem 9:1323–1348CrossRefGoogle Scholar
  18. 18.
    Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530CrossRefGoogle Scholar
  19. 19.
    Marzadori C, Miletti S, Ciurli GS (1998) Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil Biol Biochem 30:1485–1490CrossRefGoogle Scholar
  20. 20.
    Saeed A, Rehman S, Channar PA, Larik FA, Abbas Q, Hassan M, Raza H, Flörke U, Seo SY (2017) Long chain 1-acyl-3-arylthioureas as jack bean urease inhibitors, synthesis, kinetic mechanism and molecular docking studies. J Taiwan Inst Chem Eng 77:54–63CrossRefGoogle Scholar
  21. 21.
    Ibrar A, Khan I, Abbas N (2013) Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: a brief overview. Arch Pharm (Weinheim, Ger) 346:423–−446CrossRefGoogle Scholar
  22. 22.
    Aslam M, Mahmood S, Shahid M, Saeed A, Iqbal J (2011) Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur J Med Chem 46:5473–5479CrossRefGoogle Scholar
  23. 23.
    Dixon NE, Gazzola C, Watters JJ, Blakeley RL, Zerner B (1975) Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. Equivalent weight for urease. J Am Chem Soc 97:4130–4131CrossRefGoogle Scholar
  24. 24.
    Shaw WHR, Raval DN (1961) The inhibition of urease by metal ions at pH 8.9. J Am Chem Soc 83:3184–3187CrossRefGoogle Scholar
  25. 25.
    Zaborska W, Kot M, Superata K (2002) Inhibition of jack bean urease by 1,4-benzoquinone and 2,5-dimethyl-1,4-benzoquinone. Evaluation of the inhibition mechanism. J Enzyme Inhib Med Chem 17:247–253CrossRefGoogle Scholar
  26. 26.
    Ambrose JF, Kistiakowsky GB, Kridl A (1950) Inhibition of urease by sulfur compounds. J Am Chem Soc 72:317–321CrossRefGoogle Scholar
  27. 27.
    Fletcher AN (1696) Qunine sulphate as fluorescence quantum yield standard. Photochem Photobiol 9:439–444CrossRefGoogle Scholar
  28. 28.
    Rojkiewicz R, Kus P, Kozub P, Kempa M (2013) The synthesis of new potential photosensitizers [1]. Part 2. Tetrakis-(hydroxyphenyl)porphyrins with long alkyl chain in the molecule. Dyes Pigments 99:627–635CrossRefGoogle Scholar
  29. 29.
    Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974CrossRefGoogle Scholar
  30. 30.
    Raza H, Qamar A, Mubashir H, Seong-Hui E, Zaman A, Kim D, Phull AR, Kim SJ, Kang SK, Seo SY (2017) Isolation, characterization, and in silico, in vitro and in vivo antiulcer studies of isoimperatorin crystallized from Ostericum koreanum. Pharm Biol 55:218–226CrossRefGoogle Scholar
  31. 31.
    Reddy CVK, Sreeramulu D, Raghunath M (2010) Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res Int 43:285–288CrossRefGoogle Scholar
  32. 32.
    Qamar A, Raza H, Hassan M, Phull AR, Kim SJ, Seo SY (2017) Acetazolamide inhibits the level of tyrosinase and melanin: an enzyme kinetic, in vitro, in vivo and in silico studies. Chem Biodivers 14.  https://doi.org/10.1002/cbdv.201700117 CrossRefGoogle Scholar
  33. 33.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  34. 34.
    Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21CrossRefGoogle Scholar
  35. 35.
    Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) (In) John M. Walker (ed): The proteomics protocols handbook, Humana Press. 571–607Google Scholar
  36. 36.
    Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319CrossRefGoogle Scholar
  37. 37.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefGoogle Scholar
  38. 38.
    Farid R, Day T, Friesner RA, Pearlstein RA (2006) New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem 14:3160–3173CrossRefGoogle Scholar
  39. 39.
    Seth D, Setua P, Chakraborty A, Sarkar N (2007) Solvent relaxation of a room-temperature ionic liquid [bmim] [PF6] confined in a ternary microemulsion. J Chem Sci 119:105–111CrossRefGoogle Scholar
  40. 40.
    Park KH, Park JW, Hamilton AD (2007) Solvent and pH effects on fluorescence of 7-(Dimethylamino)-2-fluorenesulfonate. J Fluoresc 17:361–369CrossRefGoogle Scholar
  41. 41.
    Haidekker MA, Brady TP (2005) Effect of solvent polarity and solvent viscosity on the fluorescence properties of molecular rotors and related probes. Bioorg Chem 33:415–425CrossRefGoogle Scholar
  42. 42.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VcH Verlag GmbH,Google Scholar
  43. 43.
    Muińo PL, Callis PR (2009) Solvent effects on the fluorescence quenching of tryptophan by amides via Electron transfer. Experimental and computational studies. J Phys Chem B 113:2572–2577CrossRefGoogle Scholar
  44. 44.
    Huang Y, Cheng T, Li F, Luo C, Huang CH (2002) Photophysical studies on the mono- and dichromophoric hemicyanine dyes II. Solvent effects and dynamic fluorescence spectra study in chloroform and in LB films. J Phys Chem 106:10031–10040CrossRefGoogle Scholar
  45. 45.
    Petit J, Denis-Gay M, Ratinaud MH (1993) Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 78:1–13CrossRefGoogle Scholar
  46. 46.
    Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031CrossRefGoogle Scholar
  47. 47.
    Xiong X, Huang S, Zhang H, Li J, Shen J, Xiong J, Lin Y, Jiang L, Wang X, Liang S (2009) Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions. Proteome Sci 5:41CrossRefGoogle Scholar
  48. 48.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefGoogle Scholar
  49. 49.
    Abdul FT, Saeed A, Channar PA, Ashraf Z, Abbas Q, Hassan M, Larik FA (2018) Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1-(2-(4-isobutylphenyl) propanoyl)-3-arylthioureas as Jack bean urease inhibitors. Chem Biol Drug Des 91:434–447CrossRefGoogle Scholar
  50. 50.
    Channar PA, Saeed A, Albericio F, Larik FA, Abbas Q, Hassan M, Raza H, Seo SY (2017) Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of Jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules 22:1352.  https://doi.org/10.3390/molecules22081352 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication September/2018

Authors and Affiliations

  • Prasad G. Mahajan
    • 1
  • Nilam C. Dige
    • 2
  • Balasaheb D. Vanjare
    • 1
  • Hussain Raza
    • 3
  • Mubashir Hassan
    • 3
  • Sung-Yum Seo
    • 3
  • Seong-Karp Hong
    • 4
  • Ki Hwan Lee
    • 1
  1. 1.Department of ChemistryKongju National UniversityChungnamRepublic of Korea
  2. 2.Department of ChemistryShivaji UniversityKolhapurIndia
  3. 3.Department of Biological SciencesKongju National UniversityChungnamRepublic of Korea
  4. 4.Division of Bio and Health SciencesMokwon UniversityDaejeonRepublic of Korea

Personalised recommendations