Synchronous Luminescence Spectroscopy as a Tool in the Discrimination and Characterization of Oral Cancer Tissue

  • Einstein Gnanatheepam
  • Udayakumar Kanniyappan
  • Koteeswaran Dornadula
  • Aruna Prakasarao
  • Ganesan SingaraveluEmail author


High incidence of oral cancer is primarily due to ongoing tobacco epidemic. In this work, synchronous luminescence spectroscopy (SLS) has been used to characterize and discriminate oral cancer tissue. Spectral deconvolution method is employed to compute the fluorescence intensity, peak wavelength, and full width half maxima for different endogenous fluorophores. The fluorescence measurements were made on 21 normal and 88 oral squamous cell carcinoma biopsy tissues. Besides, variations in relative concentration of collagen, NADH, and FAD, peak shifts and broadening of peaks are observed for tryptophan, NADH, and FAD, in oral cancer tissues indicating both biochemical and micro environmental changes at cellular level. Linear discriminant analysis showed that oral cancer tissue is discriminated with a sensitivity and specificity of 100% and 95.2% respectively.


Synchronous luminescence spectroscopy Tissue Oral cancer Spectral deconvolution method 



Authors gratefully acknowledge DAE-BRNS (No.:2009/34/38/BRNS) for funding this work.

Compliance with Ethical Standards

Ethical Clearance

Ethical Clearance has been obtained from Health and Family Welfare Department, Government of Tamil Nadu, India. (Ref. no. 47846/ E2 /2012–1), to collect samples from Government Arignar Anna Cancer Hospital, Kanchipuram, Tamilnadu, INDIA.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  2. 2.
    Rivera C, Venegas B (2014) Histological and molecular aspects of oral squamous cell carcinoma (review). Oncol Lett 8:7–11CrossRefGoogle Scholar
  3. 3.
    Richards-Kortum R, Drezek R, Sokolov K, Pavlova I, Follen M (2003) Survey of endogenous biological fluorophores. Handbook of Biomedical Fluorescence:237–264Google Scholar
  4. 4.
    Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2(1–2):89–117CrossRefGoogle Scholar
  5. 5.
    Ganesan S, Sacks PG, Yang Y, Katz A, Al-Ravi M, Savage HE, Schantz SP, Alfano RR (1998) Native fluorescence spectroscopy of normal and malignant epithelial cells. Cancer Biochem Biophys 16:365–373Google Scholar
  6. 6.
    Alfano RR, Ganesan S, Katz A, Yuanlong Y (2000) U.S. patent no. 6,091,985. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  7. 7.
    Sivabalan S, Vedeswari CP, Jayachandran S, Koteeswaran D, Pravda C, Aruna P, Ganesan S (2010) In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring. J Biomed Opt 15(1):017010CrossRefGoogle Scholar
  8. 8.
    Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL et al (2002) NAD (P) H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62(3):682–687Google Scholar
  9. 9.
    Li BH, Xie SS (2005) Autofluorescence excitation-emission matrices for diagnosis of colonic cancer. World J Gastroenterol: WJG 11(25):3931–3934CrossRefGoogle Scholar
  10. 10.
    Udayakumar K, Yuvaraj M, Awad F, Jayanth V, Aruna PR, Koteeswaran D, David MB, Ganesan S (2014) Native fluorescence and time resolved fluorescence spectroscopic characterization of Normal and malignant Oral tissues under UV excitation—an in vitro study. J Fluoresc 24(2):613–623CrossRefGoogle Scholar
  11. 11.
    Alfano RR, Yang Y (2003) Stokes shift emission spectroscopy of human tissue and key biomolecules. IEEE J Sel Top Quantum Electron 9(2):148–153CrossRefGoogle Scholar
  12. 12.
    Liu Q, Grant G, Vo-Dinh T (2010) Investigation of synchronous fluorescence method in multicomponent analysis in tissue. IEEE J Sel Top Quantum Electron 16(4):927–940CrossRefGoogle Scholar
  13. 13.
    Devi, S., Mozumder, M., Ghosh, N., & Pradhan, A. (2012, February). Extraction of masked fluorescence peaks through synchronous fluorescence spectroscopy. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues X (Vol. 8225, p. 822517). International Society for Optics and PhotonicsGoogle Scholar
  14. 14.
    Majumdar, S. K., & Gupta, P. K. (1998, June). Synchronous luminescence spectroscopy of human breast tissues. In Optical Diagnostics of Biological Fluids III (Vol. 3252, pp. 169–179). International Society for Optics and PhotonicsGoogle Scholar
  15. 15.
    Pu Y, Wang W, Yang Y, Alfano RR (2013) Stokes shift spectroscopic analysis of multifluorophores for human cancer detection in breast and prostate tissues. J Biomed Opt 18(1):017005CrossRefGoogle Scholar
  16. 16.
    Ebenezar J, Pu Y, Wang WB, Liu CH, Alfano RR (2012) Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues. Appl Opt 51(16):3642–3649CrossRefGoogle Scholar
  17. 17.
    Ebenezar J, Aruna P, Ganesan S (2010) Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro. Photochem Photobiol 86(1):77–86CrossRefGoogle Scholar
  18. 18.
    Borisova E, Zhelyazkova A, Keremedchiev M, Penkov N, Semyachkina-Glushkovskaya O, Avramov L (2016) Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study. Opt Spectrosc 120(1):38–44CrossRefGoogle Scholar
  19. 19.
    Genova T, Borisova E, Zhelyazkova A, Penkov N, Vladimirov B, Terziev I, Semyachkina-Glushkovskaya O, Avramov L (2016) Colorectal cancer stage evaluation using synchronous fluorescence spectroscopy technique. Opt Quant Electron 48(8):378CrossRefGoogle Scholar
  20. 20.
    Rajasekaran R, Aruna P, Koteeswaran D, Baludavid M, Ganesan S (2014) Synchronous luminescence spectroscopic characterization of urine of normal subjects and cancer patients. J Fluoresc 24(4):1199–1205CrossRefGoogle Scholar
  21. 21.
    Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy, (1999).
  22. 22.
    Ladokhin, A. S. (2006). Fluorescence spectroscopy in peptide and protein analysis. Encyclopedia of Analytical Chemistry: Applications, Theory and InstrumentationGoogle Scholar
  23. 23.
    Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80(5):2093–2109CrossRefGoogle Scholar
  24. 24.
    Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66(2):482–501CrossRefGoogle Scholar
  25. 25.
    Callis PR, Burgess BK (1997) Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach. J Phys Chem B 101(46):9429–9432CrossRefGoogle Scholar
  26. 26.
    Lu P, Weaver V, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406CrossRefGoogle Scholar
  27. 27.
    Jones PA, DeClerck YA (1980) Destruction of extracellular matrices containing glycoproteins, elastin, and collagen by metastatic human tumor cells. Cancer Res 40:3222–3227Google Scholar
  28. 28.
    Drezek RA, Sokolov KV, Utzinger U, Boiko I, Malpica A, Follen M, Richards-Kortum RR (2001) Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt 6(4):385–397CrossRefGoogle Scholar
  29. 29.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033CrossRefGoogle Scholar
  30. 30.
    Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254(11):4764–4771Google Scholar
  31. 31.
    Glassman WS, Steinberg M, Alfano RR (1994) Time resolved and steady state fluorescence spectroscopy from normal and malignant cultured human breast cell lines. Lasers in the Life Sciences 6:91–91Google Scholar
  32. 32.
    Pradhan A, Pal P, Durocher G, Villeneuve L, Balassy A, Babai F, Gaboury L, Blanchard L (1995) Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J Photochem Photobiol B Biol 31(3):101–112CrossRefGoogle Scholar
  33. 33.
    Glassman WS, Liu CH, Tang GC, Lubicz S, Alfano R (1992) Ultraviolet excited fluorescence spectra from non-malignant and malignant tissues of the gynecological tract. Lasers in the life sciences 5(1–2):49–58Google Scholar
  34. 34.
    Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, Ramanujam N (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res:0008–5472Google Scholar
  35. 35.
    Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci 104(49):19494–19499CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Einstein Gnanatheepam
    • 1
  • Udayakumar Kanniyappan
    • 1
  • Koteeswaran Dornadula
    • 2
  • Aruna Prakasarao
    • 1
  • Ganesan Singaravelu
    • 1
    Email author
  1. 1.Department of Medical PhysicsAnna UniversityChennaiIndia
  2. 2.Department of Oral Medicine and RadiologyMeenakshi Ammal Dental College and HospitalChennaiIndia

Personalised recommendations