Advertisement

Journal of Fusion Energy

, Volume 38, Issue 3–4, pp 283–290 | Cite as

Present Status of ITER Neutron Diagnostics Development

  • L. BertalotEmail author
  • V. Krasilnikov
  • L. Core
  • A. Saxena
  • N. Yukhnov
  • R. Barnsley
  • M. Walsh
Original Research
  • 74 Downloads

Abstract

Neutron diagnostic systems are needed to monitor some important ITER parameters, such as fusion power, power density or ion temperature. The aim of this paper is to describe various systems, such as neutron cameras, internal and external flux monitors, activation system and spectrometers. Also, the current status of in situ neutron calibration strategy is reported. ITER is currently under construction in Cadarache (France) and neutron diagnostic systems are progressing from design stage to manufacturing.

Keywords

ITER Neutron diagnostic Fusion reactor Fusion power measurement 

Notes

Acknowledgements

The authors wish to thank ITER Diagnostics Team and the colleagues of ITER Members of Japan, Korea, China, Europe, United State of America, India and Russian Federation for useful discussions and collaboration. The work described was supported and carried out by ITER Organization together with ITER Members and Domestic Agencies of Japan, Korea, China, Europe, United State of America, India and Russian Federation. Part of this activity was performed within the frame work of the European Fusion Development Agreement.

References

  1. 1.
    ITER website https://www.iter.org/
  2. 2.
    G. Vayakis, E.R. Hodgson, V. Voitsenya, Chapter 12: generic diagnostic issues for a burning plasma experiment. Fusion Sci. Technol. 53, 699–750 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Sasao, T. Nishitani, A. Krasilnikov, S. Popovichev, V. Kiptily et al., Fusion product diagnostics. Fusion Sci. Technol. 53, 604–639 (2008)CrossRefGoogle Scholar
  4. 4.
    L. Bertalot, et al., Fusion neutron diagnostics on ITER tokamak, in Proceedings of the FNDA-2011 (2011)Google Scholar
  5. 5.
    M. Sasao et al., Issues on the absolute neutron emission measurement at ITER. Plasma Fusion Res. 8, 2402127 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J. Yang et al., Fusion neutron flux monitor for ITER. Plasma Sci. Technol. 10, 141 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ishikawa et al., Design of microfission chambers for ITER operations. Rev. Sci. Instrum. 79, 10E507 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Encheva, et al., Structural integrity report for ITER microfission chambers, ITER Doc. ITER_D_3TDURL (2011)Google Scholar
  9. 9.
    Y. Kashchuk, A. Krasilnikov, D. Prosvirin, A conceptual project for a divertor monitor of the neutron yield in the ITER. Instrum. Exp. Technol. 49, 179–186 (2006)CrossRefGoogle Scholar
  10. 10.
    M.S. Cheon et al., In-Vessel design of ITER diagnostic neutron activation system. Rev. Sci. Instrum. 79, 10E505 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Krasilnikov, C.I. Walker, Y. Kashchuk, D. Prosvirin, A multichannel neutron collimator for the ITER tokamak. Instrum. Exp. Technol. 47, 139 (2004)CrossRefGoogle Scholar
  12. 12.
    L. Petrizzi et al., Neutronic design of the ITER radial neutron camera. Fusion Sci. Eng. 82, 1308–1314 (2007)CrossRefGoogle Scholar
  13. 13.
    G. Ericsson, et al., Conceptual design of a high resolution neutron spectrometer system for ITER, in 26th IAEA Fusion Energy Conference, 2016 (2016)Google Scholar
  14. 14.
    C. Hellesen et al., Conceptual design of a BackTOF neutron spectrometer for fuel ion ratio measurements at ITER. Nulc. Fusion 57, 066021 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V. Krasilnikov, et al., Conceptual design of the ITER tangential neutral spectrometer, in High Temperature Plasma Diagnostic Conference, 2018 (2018)Google Scholar
  16. 16.
    T. Kormilitsyn, et al., Assessment of the fast particle spectra for tangential spectrometer for H/He and DT ITER operation, in 44th EPS Conference on Plasma Physics, 2017 (2017)Google Scholar
  17. 17.
    M. Nocente, M. Tardocchi et al., Conceptual design of the Radial Gamma Ray Spectrometer system for α particle and runaway electron measurements at ITER. Nucl. Fusion 57, 076016 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    L. Bertalot, et al., A strategy for calibrating the neutron system at ITER, in Proceedings of the 35th Plasma Physics Conference, 2008 (2008)Google Scholar
  19. 19.
    M. Sasao, L. Bertalot, M. Ishikawa, S. Popovichev, Strategy for the absolute neutron emission measurement on ITER. Rev. Sci. Instrum. 81, 10D329 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Ishikawa, T. Kondoh, K. Takeda, K. Itami, Neutron Transport Analysis of the process affecting the in situ calibration of ITER In-Vessel neutron flux monitor equipped with a micro-fission chamber system. Plasma Fusion Res. 11, 1402118 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The ITER Organization 2019

Authors and Affiliations

  • L. Bertalot
    • 1
    Email author
  • V. Krasilnikov
    • 2
  • L. Core
    • 3
  • A. Saxena
    • 4
  • N. Yukhnov
    • 2
  • R. Barnsley
    • 1
  • M. Walsh
    • 1
  1. 1.ITER OrganizationSt. Paul Lez Durance CedexFrance
  2. 2.Tokamak Energy LtdAbingdonUK
  3. 3.Arkadia TechnologyAix-en-provenceFrance
  4. 4.FIRCROFTWarrington, CheshireUK

Personalised recommendations