Journal of Fusion Energy

, Volume 38, Issue 2, pp 253–261 | Cite as

Operational Domain in Hydrogen Plasmas on the GOLEM Tokamak

  • Vojtech SvobodaEmail author
  • Maya Zhekova
  • Miglena Dimitrova
  • Plamena Marinova
  • Ales Podolník
  • Jan Stockel
Original Research


A series of discharges in hydrogen were performed in two experimental sessions. The vessel was not conditioned before the first session, while inductive heating of the vessel and cleaning glow discharge were applied before the second session. Experimental results from both sessions are compared, and optimum operational conditions for the majority of key plasma parameters are determined. It is found that plasma performance with a properly conditioned vessel is significantly better, as expected. In particular, a noticeable increase of discharge duration, and of the electron temperature is observed.


Tokamak Plasma Operational domains 



The first experimental session was performed during 8th International Workshop and Summer School on Plasma Physics, Kiten, (June 2018, Bulgaria). Authors acknowledge an active contribution of participants of the workshop. Authors also thank to Vladimir Fuchs for careful reading the manuscript and for his valuable comments. This work was partially supported by the EU Operational program Research, Development and Education No CZ.02.1.01/0.0/0.0/16_019/0000778 Centre of Advanced Applied Sciences. Additional support has been granted from International Atomic Energy Association Research Contract F13019, entitled “Network of Small and Medium Size Magnetic Confinement Fusion Devices for Fusion Research” and the Joint project between the Bulgarian and Czech Academies of Sciences, BAS – 17-05. The opinions expressed by authors do not necessarily represent the positions of the European Commission neither IAEA.


  1. 1.
    V. Svoboda, G. Pokol, D.I. Réfy, J. Stöckel, G. Vondrášek Former tokamak CASTOR becomes remotely controllable GOLEM at the Czech Technical University in Prague, in 37th EPS Conference on Plasma Physics, Dublin (2010)Google Scholar
  2. 2.
    J. Stockel, J. Badalec, I. Duran, M. Hron, J. Horacek, K. Jakubka, L. Kryska, J. Petrzilka, F. Zacek, M.V.P. Heller, Z.A. Brazilio, I.L. Caldas, Magnetic and electrostatic fluctuations in the CASTOR tokamak. Plasma Phys. Contr. Fusion 41(Suppl. 3A), A577–A585 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    J. Stöckel, J. Adamek, P. Balan, O. Bilyk, J. Brotankova, R. Dejarnac, P. Devynck, I. Duran, J.P. Gunn, M. Hron, J. Horacek, C. Ionita, M. Kocan, E. Martines, R. Panek, P. Peleman, R. Schrittwieser, G. Van Oost, F. Zacek, Advanced probes for edge plasma diagnostics on the CASTOR tokamak. J. Phys. Conf. Ser. 63, 012001 (2007)CrossRefGoogle Scholar
  4. 4.
    V. Svoboda, A. Dvornova, R. Dejarnac, M. Prochazka, S. Zaprianov, R. Akhmethanov, M. Bogdanova, M. Dimitrova, O. Zh Dimitrov, L.Hlavata. Grover, K. Ivanov, K. Kruglov, P. Marinova, P. Masherov, A. Mogulkin, J. Mlynar, J. Stockel, A. Volynets, Remote operation of the GOLEM tokamak with hydrogen and helium plasmas. J. Phys. Conf. Ser. 768, 012002 (2016). CrossRefGoogle Scholar
  5. 5.
    T. Odstrcil, M. Odstrcil, O. Grower, V. Svoboda, I. Duran, J. Mlynar, Low cost alternative of high speed visible light camera for tokamak experiments. Rev. Sci. Instrum. 83, 10E505 (2012). CrossRefGoogle Scholar
  6. 6.
    M. Gryaznevich, V. Svoboda, J. Stockel, A. Sykes, N. Sykes, D. Kingham, G. Hammond, P. Apte, T.N. Todd, S. Ball, S. Chappell, Z. Melhem, I. Ďuran, K. Kovarik, O. Grover, T. Markovic, M. Odstrcil, T. Odstrcil, A. Sindlery, G. Vondrasek, J. Kocman, M.K. Lilley, P. de Grouchy, H.-T. Kim, Progress in application of high temperature superconductor in tokamak magnets. Fusion Eng. Des. 88(9–10), 1593–1596 (2013). ISSN 0920-3796
  7. 7.
    V. Svoboda, B. Huang, J. Mlynar, G.I. Pokol, J. Stöckel, G. Vondrasek, Multi-mode remote participation on the GOLEM tokamak. Fusion Eng. Des. 86, 1310–1314 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Brotankova, PhD thesis, (Charles University, 2009). Accessed 19 Mar 2019
  9. 9.
    J. Wesson, Tokamaks, 2nd edn. (Clarendon Press, Oxford, 2011), p. 169zbMATHGoogle Scholar
  10. 10.
    H. Prinzler, P. Heymann, J. Stockel, J. Babalec, F. Zacek, K. Jakubka, V. Kopecky, Investigation of the start up phase in the TM-1-MH tokamak. Czech J. Phys. 34(7), 665–679 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    See e.g. (2018). Accessed 19 Mar 2019
  12. 12.
    B. Lloyd, P.G. Carolan, C.D. Warrick, ECRH-assisted start-up in ITER. Plasma Phys. Control. Fusion 38(9), 1627–1643 (2007). ADSCrossRefGoogle Scholar
  13. 13.
    O. Ficker, O. Grover, J. Kocman, J. Krbec, V. Loffeman, T. Markovic, M. Matusu, J. Stockel, V. Svoboda, J. Veverka, G. Vondrasek, Tokamak GOLEM for fusion education chapter 5, in EPS 41st Conference on Plasma Physics, Berlin (2014), p. 4.141Google Scholar
  14. 14.
    H. Knoepfel, D.A. Spong, Nucl. Fusion 19, 785 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    O. Ficker, Generation, Losses and Detection of Runaway Electrons in Tokamaks Diploma thesis, (Czech Technical University, 1985). Accessed 19 Mar 2019

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty on Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Faculty of Forest IndustryUniversity of ForestrySofiaBulgaria
  3. 3.Acad. E. Djakov Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of Plasma PhysicsAS CRPragueCzech Republic

Personalised recommendations