Advertisement

Journal of Fusion Energy

, Volume 38, Issue 2, pp 244–252 | Cite as

Equilibrium Reconstruction and Equilibrium Properties in QUEST Tokamak

  • Erbing Xue
  • Xianmei ZhangEmail author
  • Kazuo Nakamura
  • Limin Yu
Original Research
  • 373 Downloads

Abstract

Plasma shape reconstruction is an important part of tokamak data analysis. An off-line plasma shape reconstruction, based on the EFIT code in Linux system, can be carried out in Q-shu Univ. Experiment in Steady-State Spherical Tokamak (QUEST). In this paper, the algorithm about equilibrium reconstruction is described in detail. Magnetic reconstruction in QUEST, which is calculated by the EFIT code according to the external magnetic measurements, is introduced and the results are presented in detail. It is known that the eddy current effect is large in QUEST experiment, the eddy current effect is first considered into equilibrium reconstruction. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. To test the accuracy of the result, a comparison with the result of Cauchy condition surface method has made, which suggests the reliability of the result. A visualization interface is made, which is convenient for physicists and operators to analyze the behavior of plasma. At the same time, the operation space of elongated discharges is discussed based on the QUEST database. The real time EFIT will be applied to the plasma control system of QUEST in the future.

Keywords

Equilibrium reconstruction QUEST Tokamak Eddy current Equilibrium properties 

Notes

Acknowledgements

This work was supported by the Chinese National Natural Science Foundation Contract Nos. 11405058, 11675053 and the Chinese Ministry of Science and Technology Contract No. 2013GB106020.

References

  1. 1.
    L.L. Lao, H. St John, Q. Peng et al., Fusion Sci. Technol. 48, 968 (2005)CrossRefGoogle Scholar
  2. 2.
    D.W. Swain, G.H. Neilson, Nucl. Fusion 22, 1015 (1982)CrossRefGoogle Scholar
  3. 3.
    B.J. Braams, Plasma Phys. Control. Fusion 33, 715 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Yu.K Kuznetsov, I.C. Nascimento, R.M.O. Galvão et al., Nucl. Fusion 38, 1829 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    L.L. Lao, H. St John, R.D. Stambaugh et al., Nucl. Fusion 25, 1611 (1985)CrossRefGoogle Scholar
  6. 6.
    K. Kurihara, Fusion Eng. Des. 51, 1049 (2000)CrossRefGoogle Scholar
  7. 7.
    S.A. Sabbagh, S.M. Kayeb, J. Menard et al., Nucl. Fusion 41, 1601 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    G. Artaserse, F. Maviglia, R. Albanese et al., Fusion Eng. Des. 88, 1091 (2013)CrossRefGoogle Scholar
  9. 9.
    L.C. Appel, M.K. Bevir, M.J. Walsh et al., Nucl. Fusion 41, 169 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hanada, K.N. Sato, H. Zushi et al., Plasma Fusion Res. 5, 1007 (2010)CrossRefGoogle Scholar
  11. 11.
    L.L. Lao, J.R. Ferron, R.J. Groebner et al., Nucl. Fusion 30, 1035 (1990)CrossRefGoogle Scholar
  12. 12.
    T. Takeda, S. Tokuda, Comput. Phys. 13, 1 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    L.L. Lao, H. St John, R.D. Stambaugh et al., Nucl. Fusion 25, 1421 (1985)CrossRefGoogle Scholar
  14. 14.
    J.G. Cordey et al., Plasma Phys. Control Fusion 39, 115 (1997)CrossRefGoogle Scholar
  15. 15.
    E.A. Lazarus et al., Phys. Rev. Lett. 77, 2714 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Erbing Xue
    • 1
  • Xianmei Zhang
    • 1
    Email author
  • Kazuo Nakamura
    • 2
  • Limin Yu
    • 1
  1. 1.Department of Physics, College of ScienceEast China University of Science and TechnologyShanghaiP. R. China
  2. 2.Research Institute for Applied MechanicsKyushu UniversityKasugaJapan

Personalised recommendations