Advertisement

Journal of Fusion Energy

, Volume 38, Issue 2, pp 228–235 | Cite as

Diagnostics and Improvement of the Velocity and Density Characteristic of Deuterium/Hydrogen Supersonic Molecular Gas Jet

  • Zhiyuan Chen
  • Min Li
  • Maolei Zhou
  • Dong Liu
  • Guofeng QuEmail author
  • Yizhou Wang
  • Jifeng HanEmail author
Original Research
  • 268 Downloads

Abstract

The detailed evolution process of deuterium and hydrogen supersonic molecular beam (SMB) was probed by one simple method based on the microphone. The velocity of the beam was measured by time-of-flight method, and the density was investigated by comparing the radial profiles of the SMB with the total amounts of molecules in the gas jet. The velocity and number density of deuterium SMB generated from a cylindrical nozzle were tested to be 1100 m/s and 3.6E15 cm−3 at axial distance of 1700 mm and stagnation pressure of 50 bar, which was about 30% lower than that of hydrogen SMB generated from the same nozzle, and was in consistent with the total number of molecules in deuterium gas jet that was 30% smaller than hydrogen. It is found that the use of a cylindrical nozzle and arrangement of a special skimmer can increase the central density of SMB by about 150% and 45%, while the utilization of one conical nozzle would increase the velocity of the SMB by 13%, these results could give great help in the SMB diagnostics and fueling of the nuclear fusion experiments.

Keywords

Supersonic molecular beam Velocity and density Evolution Diagnostics Microphone 

Notes

Acknowledgements

The project is supported by the National Magnetic Confinement Fusion Program of China (2014GB125004) and the National Natural Science Foundation of China (11275133, 11575121).

Compliance with Ethical Standards

Conflict of interest

The authors(s) declare no potential conflict of interest.

References

  1. 1.
    M.F. Danlsman, L. Casalis, G. Scoles, Phys. Rev. B 72, 085404 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    M. Belan et al., N. J. Phys. 16, 085002 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Gao et al., Phys. Plasmas 72, 933–2938 (2000)Google Scholar
  4. 4.
    W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    W.W. Xiao et al., Phys. Rev. Lett. 104, 215001 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Rice et al., Nucl. Fusion 42, 510–519 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    B. Pégourié et al., J. Nucl. Mater. 313–316, 539–542 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Sajjad et al., Phys. Lett. A 373, 1133–1139 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D.L. Yu et al., Nucl. Fusion 52, 082001 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z.H. Wang et al., Nucl. Fusion 54, 043019 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. MiloraS et al., Nucl. Fusion 35, 657–754 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    L.H. Yao et al., Plasma Sci. Technol. 125, 29–534 (2010)ADSGoogle Scholar
  13. 13.
    V.A. SoukhanovskiiH et al., Rev. Sci. Instrum. 75, 4320–4323 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    H. Takenaga et al., Nucl. Fusion 50, 011003 (2010)CrossRefGoogle Scholar
  15. 15.
    L.H. Yao, J. Baldzuhn, Plasma Sci. Technol. 5, 1933–1938 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    T. Mizuuchi et al., Contrib. Plasma Phys. 50, 639–645 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Murakami et al., Plasma Phys. Control. Fusion 54, 055006 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Loarte et al., Nucl. Fusion 47, S203 (2007)CrossRefGoogle Scholar
  19. 19.
    O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793–1802 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    P.T. Lang et al., Nucl. Fusion 41, 1107–1112 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    X.K. Wu et al., Chin. Phys. B 26, 065201 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    R.W. Lempert et al., AIAA 40, 1065–1070 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Bouhanguel et al., in 15th International Symposium on Flow Visualization, Minsk, Belarus, 25–28 June 2012Google Scholar
  24. 24.
    M.A. Karns, Development of a laser doppler velocimetry system for supersonic jet turbulence measurements. Master Thesis, The Pennsylvania State University, 2014Google Scholar
  25. 25.
    L. He et al., Chin. Phys. B 22, 024704 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.F. Dong et al., Plasma. Phys. Control. Fusion 44, 371–379 (2002)CrossRefGoogle Scholar
  27. 27.
    D.L. Yu et al., Nucl. Fusion 50, 035009 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    P. Ramaprabhu, M.J. Andrews, Exp. Fluids 34, 98–106 (2003)CrossRefGoogle Scholar
  29. 29.
    D. Xu, J. Chen, Exp. Fluids 53, 145–162 (2012)CrossRefGoogle Scholar
  30. 30.
    R. Rajeev et al., J. Appl. Phys. 114, 083112 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D. Liu et al., Rev. Sci. Instrum. 87, 123504 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    D. Liu et al., Jinst 11, T02004 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    J.F. Han et al., Eur. Phys. J. D 56, 347–352 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M. Hillenkamp, S. Keinan, U. Even, J. Chem. Phys. 118, 8699–8705 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    D. Golomb et al., J. Chem. Phys. 57, 3844–3852 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    J.S. Xiao et al., J. Fusion Energ. 34, 1020–1026 (2015)CrossRefGoogle Scholar
  37. 37.
    P.M. Sherman, AIAA J. 9, 1628–1630 (1971)ADSCrossRefGoogle Scholar
  38. 38.
    W. Christen, K. Rademann, Phys. Scr. 80, 048127 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    W. Christen et al., J. Phys. Chem. A 115, 6997–7004 (2011)CrossRefGoogle Scholar
  40. 40.
    O.F. Hagena, Z. Phys. D 4, 291–299 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    R. Campargue, J. Chem. Phys. 52, 1795 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduPeople’s Republic of China
  2. 2.Southwest Reactor Engineering Research and Design AcademyChengduPeople’s Republic of China

Personalised recommendations