Journal of Fusion Energy

, Volume 38, Issue 1, pp 11–71 | Cite as

Innovations in Technology and Science R&D for ITER

  • David J. CampbellEmail author
  • Tsuyoshi Akiyama
  • Robin Barnsley
  • Michele Bassan
  • Larry R. Baylor
  • Luciano Bertalot
  • Frédéric Escourbiac
  • Luciano M. Giancarli
  • Philippe Gitton
  • Julio Guirao
  • Martin Kocan
  • Vitaly Krasilnikov
  • Uron Kruezi
  • Michael Lehnen
  • So Maruyama
  • Yunxing Ma
  • Mario Merola
  • Neil Mitchell
  • C. Spencer Pitcher
  • A. René Raffray
  • Roger Reichle
  • Pavel Shigin
  • Antoine Sirinelli
  • Victor Udintsev
  • Jaap G. van der Laan
  • George Vayakis
  • Anders Wallander
  • Michael Walsh
  • Christopher Watts
  • the ITER Organization, Domestic Agencies and ITER Collaborators
Original Research


ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. Rapid progress is being made in project construction, and the facility is now taking shape at St-Paul-lez-Durance in southern France. In the course of designing and manufacturing of the systems making up the ITER tokamak and the ITER facility, extensive ground-breaking R&D has been implemented by the ITER partners across a wide range of technology and science areas which underpin the achievement of the project’s engineering and fusion plasma performance requirements. Significant developments have been made in the production of high performance Nb3Sn superconducting strand and in magnet technologies supporting the construction of the largest superconducting magnets produced to date. High heat flux plasma facing components have been fabricated which are capable of sustaining quasi-stationary heat loads of up to 10 MW m−2 and transient loads of up to 20 MW m−2. Fusion nuclear technologies such as remote maintenance and tritium breeding have received specific emphasis within the ITER R&D program, since extensive deployment of these technologies is foreseen. Diagnostic systems face particular challenges in the ITER environment, and wide-ranging R&D activities have been implemented to develop novel solutions to ensure an adequate measurement capability in ITER DT operation. Routine and reliable operation in ITER will require a highly effective capability for the detection, avoidance and mitigation of disruptions, and significant science and technology R&D is underway to establish this capability. The overall integration of the control requirements for the ITER plasma and facility, in particular during burning plasma operation, has presented new challenges for fusion control systems, including the need for robust safety and hardware (investment) protection. These challenges are being addressed via the implementation of the most extensive and ambitious control system to date. The paper introduces the ITER project and its major goals in relation to the development of fusion energy and provides an overview of key innovations which have been made in these areas of fusion technology and science in support of ITER construction.


ITER Tokamak Fusion power Burning plasma Fusion technology 



This report represents the work of the staff of the ITER Organization, the Domestic Agencies and many collaborators in the Members’ fusion communities. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.


  1. 1.
    T. Akiyama et al., Dispersion interferometer using modulation amplitudes on LHD. Rev. Sci. Instrum. 85, 11D301 (2014)Google Scholar
  2. 2.
    T. Akiyama et al., A heterodyne dispersion interferometer for wide-bandwidth density measurements on DIII-D. Rev. Sci. Instrum. 89, 10B105 (2018)Google Scholar
  3. 3.
    N. Ayai et al., Development of Nb3Al superconductors for ITER. IEEE Trans. Appl. Supercond. 9, 2688 (1999)ADSGoogle Scholar
  4. 4.
    R. Aymar, P. Barabaschi, Y. Shimomura, The ITER design. Plasma Phys. Control. Fusion 44, 519 (2002)ADSGoogle Scholar
  5. 5.
    D. Babineau et al., Review of the ITER fuel cycle, paper ITR/2-2, in Proceedings of 23rd IAEA Fusion Energy Conference, Daejeon (2010)Google Scholar
  6. 6.
    P.A. Bagryansky et al., Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments. Rev. Sci. Instrum. 77, 053501 (2006)ADSGoogle Scholar
  7. 7.
    E. Barrera et al., Implementation of ITER fast plant interlock system using FPGAs with compactRIO. IEEE Trans. Nucl. Sci. 65, 796 (2018)ADSGoogle Scholar
  8. 8.
    P. Bauer et al., R&D towards HTS current leads for ITER. IEEE Trans. Appl. Supercond. 19, 1500 (2009)ADSGoogle Scholar
  9. 9.
    P. Bauer et al., Test results of 52/68 kA trial HTS current leads for ITER. IEEE Trans. Appl. Supercond. 20, 1718 (2010)ADSGoogle Scholar
  10. 10.
    P. Bauer et al., Development of HTS current leads for the ITER project. ITER technical report ITR-18-001, ITER Organization, St-Paul-lez-Durance (2018)Google Scholar
  11. 11.
    L.R. Baylor et al., Reduction of ELM intensity using high repetition rate pellet injection in Tokamak H-mode plasmas. Phys. Rev. Lett. 110, 245001 (2013)ADSGoogle Scholar
  12. 12.
    L. Begrambekov et al., Development of quality tungsten coating on ceramics as a microwave shield for ITER high-frequency magnetic sensor. submitted to Fusion Sci. Technol.  (to be published) Google Scholar
  13. 13.
    D. Bessette, Sensitivity of Nb3Sn ITER conductor design to selected parameters. IEEE Trans. Appl. Supercond. 13, 1433 (2003)ADSGoogle Scholar
  14. 14.
    D. Bessette et al., Test results from the PF conductor insert coil and implications for the ITER PF system. IEEE Trans. Appl. Supercond. 19, 1525 (2009)ADSGoogle Scholar
  15. 15.
    B. Bigot, Progress in ITER construction, manufacturing and R&D, paper OV/1-2, in Proceedings of 26th IAEA Fusion Energy Conference, Kyoto (2016)Google Scholar
  16. 16.
    D.J. Campbell et al., Challenges in burning plasma physics: the ITER research plan, paper ITR/P1-18, in Proceedings of 24 th IAEA Fusion Energy Conference, San Diego (2012)Google Scholar
  17. 17.
    S. Cho et al., Design and R&D progress of Korean HCCR TBM. Fusion Eng. Des. 89, 1137 (2014)Google Scholar
  18. 18.
    S.K. Combs et al., Alternative techniques for injecting massive quantities of gas for plasma-disruption mitigation. IEEE Trans. Plasma Sci. 38, 400 (2010)ADSGoogle Scholar
  19. 19.
    S.K. Combs et al., Solidification and acceleration of large cryogenic pellets suitable for plasma disruption mitigation. IEEE Trans. Plasma Sci. 44, 1506 (2016)ADSGoogle Scholar
  20. 20.
    S.K. Combs, L.R. Baylor, Pellet-injector technology - brief history and key developments in the last 25 years. Fusion Sci. Technol. 73, 493 (2018)Google Scholar
  21. 21.
    C. Damiani et al., Overview of the ITER remote maintenance design and of the development activities in Europe. Fusion Eng. Des. 136, 1117 (2018)Google Scholar
  22. 22.
    J.-J. Dang et al., Study of capsule position monitoring methods for ITER neutron activation system. Fusion Eng. Des. 89, 2268 (2014)Google Scholar
  23. 23.
    M. Darweschsad et al., Development and test of the poloidal field prototype coil POLO at Forschungszentrum Karlsruhe. Fusion Eng. Des. 36, 227 (1997)Google Scholar
  24. 24.
    A. Devred et al., Challenges and status of ITER conductor production. Supercond. Sci. Technol. 27, 044001 (2014)ADSGoogle Scholar
  25. 25.
    F. Di Maio et al., CODAC core system for the ITER plant system I&C, in Proceedings of 27th IEEE Symposium on Fusion Energy (SOFE 2017), Shanghai (2017)Google Scholar
  26. 26.
    T.E. Evans et al., RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities. Nucl. Fusion 48, 024002 (2008)ADSGoogle Scholar
  27. 27.
    K. Feng et al., Current progress of Chinese HCCB TBM program. Fusion Eng. Des. 109–111, 729 (2016)Google Scholar
  28. 28.
    M.E. Fenstermacher et al., Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D. Phys. Plasmas 15, 056122 (2008)ADSGoogle Scholar
  29. 29.
    J.L. Fernández-Hernando et al., The ITER interlock system. Fusion Eng. Des. 129, 104 (2018)Google Scholar
  30. 30.
    W.H. Fietz et al., Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Eng. Des. 88, 440 (2013)Google Scholar
  31. 31.
    L.M. Giancarli et al., Overview of the TBM program. Fusion Eng. Des. 87, 395 (2012)Google Scholar
  32. 32.
    L.M. Giancarli et al., Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations. Fusion Eng. Des. 89, 2088 (2014)Google Scholar
  33. 33.
    L.M. Giancarli et al., Progress and challenges of the ITER TBM program from the IO perspective. Fusion Eng. Des. 109–111, 1491 (2016)Google Scholar
  34. 34.
    L.M. Giancarli et al., ITER TBM Program and associated system engineering. Fusion Eng. Des. 136, 815 (2018)Google Scholar
  35. 35.
    L. Giudicotti, R. Pasqualotto, On the calibration of polarimetric Thomson scattering by Raman polarimetry. Plasma Phys. Control. Fusion 57, 125015 (2015)ADSGoogle Scholar
  36. 36.
    M. Glugla et al., Overview of the ITER D-T fuel cycle systems, in Proceedings of 10th International Symposium on Fusion Nuclear Technology (ISFNT-10), Portland (2011)Google Scholar
  37. 37.
    R. Heller et al., Experimental results of a 70 kA high temperature superconductor current lead demonstrator for the ITER magnet system. IEEE Trans. Appl. Supercond. 15, 1496 (2005)ADSGoogle Scholar
  38. 38.
    A.M. Hernández Almería et al., Design, manufacture, qualification and installation of the nuclear safety control system of ITER, in Proceedings of Spanish Nuclear Society 42nd Annual Meeting, Santander (2016)Google Scholar
  39. 39.
    R.J. Hawryluk et al., Principal physics developments evaluated in the ITER design review. Nucl. Fusion 49, 065012 (2009)ADSGoogle Scholar
  40. 40.
    T. Hirai et al., ITER divertor materials and manufacturing challenges. Fusion Eng. Des. 125, 250 (2017)Google Scholar
  41. 41.
    T. Hirai et al., Design optimization of the ITER tungsten divertor vertical targets. Fusion Eng. Des. 127, 66 (2018)Google Scholar
  42. 42.
    E.M. Hollmann et al., Status of research towards the ITER disruption mitigation system. Phys. Plasmas 22, 021802 (2015)ADSGoogle Scholar
  43. 43.
    D. Hu et al., 3D non-linear MHD simulation of the MHD response and density increase as a result of Shattered Pellet Injection. Nucl. Fusion 58, 126025 (2018)ADSGoogle Scholar
  44. 44.
    K. Humer et al., Radiation effects on the mechanical properties of insulators for fusion magnets. Fusion Eng. Des. 81, 2433 (2006)Google Scholar
  45. 45.
    K. Humer et al., Innovative insulation systems for superconducting fusion magnets. Supercond. Sci. Technol. 19, S96 (2006)ADSGoogle Scholar
  46. 46.
    D.A. Humphreys et al., Experimental vertical stability studies for ITER performance and design guidance, paper IT/2-4b, in Proceedings of 22nd IAEA Fusion Energy Conference, Geneva (2008)Google Scholar
  47. 47.
    IEC 61508-1:2010, Functional safety of electrical/electronic/programmable electronic safety-related systems, ISBN 978-2-88910-524-3 International Electrotechnical Commission (2010)Google Scholar
  48. 48.
    L.C. Ingesson, Fusion for Energy, private communication (2018)Google Scholar
  49. 49.
    INTOR Group, International tokamak reactor—phase I (executive summary of the IAEA workshop, 1981). Nucl. Fusion 22, 135 (1982)Google Scholar
  50. 50.
    INTOR Group, International tokamak reactor—phase two A, part III executive summary of the IAEA workshop, mid-1985 to 1987. Nucl. Fusion 28, 711 (1988)Google Scholar
  51. 51.
    M. Ishikawa et al., Development of the microfission chamber for fusion power diagnostics on ITER. J. Plasma Fusion Res. 8, 334 (2009)Google Scholar
  52. 52.
    International Thermonuclear Engineering Reactor (ITER), ITER Conceptual Design Report, ITER documentation series no. 18, IAEA, Vienna (1991)Google Scholar
  53. 53.
    International Thermonuclear Engineering Reactor (ITER), Final Design Report, Cost Review and Safety Analysis, ITER EDA documentation series no. 14, IAEA, Vienna (1998)Google Scholar
  54. 54.
    ITER, Summary of the ITER Final Design Report, ITER EDA documentation series no. 22, IAEA, Vienna (2001)Google Scholar
  55. 55.
    ITER Technical Basis, ITER EDA documentation series no. 24, IAEA, Vienna (2002)Google Scholar
  56. 56.
    ITER Physics Expert Groups et al., The ITER physics basis. Nucl. Fusion 39, 2137 (1999)ADSGoogle Scholar
  57. 57.
    ITPA Topical Groups et al., Progress in the ITER physics basis. Nucl. Fusion 47, S1 (2007)Google Scholar
  58. 58.
    Y. Kawamura et al., Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO. Fusion Eng. Des. 109–111, 1637 (2016)Google Scholar
  59. 59.
    S. Khomiakov et al., ITER blanket module connectors. Design, analysis and testing for procurement arrangement. Fusion Eng. Des. A 109–111, 261 (2016)Google Scholar
  60. 60.
    M. Kikuchi, M. Azumi, Steady-state tokamak research: core physics. Rev. Mod. Phys. 84, 1807 (2012)ADSGoogle Scholar
  61. 61.
    S.-W. Kim et al., Verification of dimensional stability on ITER blanket shield block after stress relieving. Fusion Eng. Des. A 109–111, 878 (2016)Google Scholar
  62. 62.
    B.-Y. Kim et al., Design and manufacturing feasibility of ITER TBM Frame and Dummy TBMs. Fusion Eng. Des. 109–111, 996 (2016)Google Scholar
  63. 63.
    J. Knaster et al., Design issues of the pre-compression rings of ITER, in Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference—ICMC, Vol. 56, Tucson, Arizona, July 2009, AIP Conference Proceedings, vol. 1219, p. 145 (2010)Google Scholar
  64. 64.
    J. Knauer et al., A new dispersion interferometer for the Stellarator Wendelstein 7-X, in EUROFUSION WPS1-PR(16) 16154 (2015)Google Scholar
  65. 65.
    M. Kocan et al., Steady-state magnetic sensors for ITER and beyond: development and final design. Rev. Sci. Instrum. 89, 10J119 (2018)Google Scholar
  66. 66.
    R. König et al., Diagnostic developments for quasicontinuous operation of the Wendelstein 7-X stellarator. Rev. Sci. Instrum. 79, 10F337 (2008)Google Scholar
  67. 67.
    R.J. La Haye, A. Isayama, M. Marascheck, Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER. Nucl. Fusion 49, 045005 (2009)ADSGoogle Scholar
  68. 68.
    M.J. Lanctot et al., A path to stable low-torque plasma operation in ITER with test blanket modules. Nucl. Fusion 57, 036004 (2017)ADSGoogle Scholar
  69. 69.
    P.T. Lang et al., ELM frequency control by continuous small pellet injection in ASDEX Upgrade. Nucl. Fusion 43, 1110 (2003)ADSGoogle Scholar
  70. 70.
    S.A.E. Langeslag et al., Extensive characterisation of advanced manufacturing solutions for the ITER central solenoid pre-compression system. Fusion Eng. Des. 98–99, 2015 (2015)Google Scholar
  71. 71.
    G.S. Lee et al., Design and construction of the KSTAR tokamak. Nucl. Fusion 41, 1515 (2001)ADSGoogle Scholar
  72. 72.
    M. Lehnen et al., Impact and mitigation of disruptions with the ITER-like wall in JET. Nucl. Fusion 53, 093007 (2013)ADSGoogle Scholar
  73. 73.
    M. Lehnen et al., Disruptions in ITER and strategies for their control and mitigation. J. Nucl. Mater. 463, 39 (2015)ADSGoogle Scholar
  74. 74.
    M. Lehnen, S. Maruyama, Executive report of the Disruption Mitigation Workshop, ITER technical report ITR-18-002, ITER Organization, St-Paul-lez-Durance (2018)Google Scholar
  75. 75.
    F. Leipold et al., Cleaning of first mirrors in ITER by means of radio frequency discharges. Rev. Sci. Instrum. 87, 11D439 (2016)Google Scholar
  76. 76.
    A. Loarte et al., Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation. Nucl. Fusion 54, 033007 (2014)ADSGoogle Scholar
  77. 77.
    P. Lorenzetto et al., EU contribution to the procurement of the ITER blanket first wall. Fusion Eng. Des. A 109–111, 661 (2016)Google Scholar
  78. 78.
    T.C. Luce et al., Development of advanced inductive scenarios for ITER. Nucl. Fusion 54, 013015 (2014)ADSGoogle Scholar
  79. 79.
    D. Marocco et al., The ITER radial neutron camera detection system, in AIP Conference Proceedings, vol. 988, p. 291 (2008)Google Scholar
  80. 80.
    G.F. Matthews et al., Plasma operation with an all metal first-wall: comparison of an ITER-like wall with a carbon wall in JET. J. Nucl. Mater. 438, S2 (2013)Google Scholar
  81. 81.
    I.V. Mazul et al., Technological challenges at ITER plasma facing components production in Russia. Fusion Eng. Des. A 109–111, 1028 (2016)Google Scholar
  82. 82.
    H. Meister et al., Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane. Rev. Sci. Instrum. 81, 10E132 (2010)Google Scholar
  83. 83.
    H. Meister et al., Reliability issues for a bolometer detector for ITER at high operating temperatures. Rev. Sci. Instrum. 83, 10D724 (2012)Google Scholar
  84. 84.
    M. Merola et al., Engineering challenges and development of the ITER Blanket System and Divertor. Fusion Eng. Des. 96–97, 34 (2015)Google Scholar
  85. 85.
    V.V. Mirnov, D.J. Den Hartog, Polarization of incoherent Thomson scattering for electron temperature measurement. Plasma Phys. Control. Fusion 59, 063001 (2017)ADSGoogle Scholar
  86. 86.
    N. Mitchell, L. Bottura, Superconductors for the NET coils. Fusion Eng. Des. 15, 85 (1991)Google Scholar
  87. 87.
    N. Mitchell et al., Conductor design and optimisation for ITER. IEEE Trans. Magn. 32, 2997 (1996)ADSGoogle Scholar
  88. 88.
    N. Mitchell et al., Conductor development for the ITER magnets, in Proceedings of 15th International Conference on Magnet Technology, Beijing, 1997 (Science Press, Beijing, 1997), p. 347Google Scholar
  89. 89.
    N. Mitchell et al., Avoidance of stress accelerated grain boundary oxidation (SAGBO) in Incoloy 908 used as a jacket material for Nb3Sn conductors, in Proceedings of 15th International Conference on Magnet Technology, Beijing, 1997 (Science Press, Beijing, 1997), p. 1163Google Scholar
  90. 90.
    N. Mitchell, Summary, assessment and implications of the ITER model coil test results. Fusion Eng. Des. 66–68, 971 (2003)Google Scholar
  91. 91.
    N. Mitchell, Stability criteria for cable-in-conduit superconducting cables for steady or slow pulse operation. IEEE Trans. Appl. Supercond. 14, 1350 (2004)ADSGoogle Scholar
  92. 92.
    M.M. Morra et al., Incoloy 908, a new low coefficient of thermal expansion sheathing alloy for use in ICCS magnets. Adv. Cryog. Eng. 34, 157 (1988)Google Scholar
  93. 93.
    H. Nakajima, K. Yoshida, S. Shimamoto, Development of new cryogenic steels for the superconducting magnets of the fusion experimental reactor. ISIJ Int. 30, 567 (1990)Google Scholar
  94. 94.
    C. Nardi, L. Bettinali, A. Pizzuto, Fibreglass unidirectional composite to be used for ITER pre-compression rings. Fusion Eng. Des. 75–79, 249 (2005)Google Scholar
  95. 95.
    R. Neu et al., Overview on plasma operation with a full tungsten wall in ASDEX Upgrade. J. Nucl. Mater. 438, S34 (2013)Google Scholar
  96. 96.
    Y. Nishijima et al., Development of manufacturing technologies for the ITER toroidal field coil: effort for precise manufacturing, in ASME 2017 Pressure Vessels and Piping Conference, Vol. 6A: Materials and Fabrication, Waikoloa, Hawaii, July 2017, paper PVP2017-65599 (2017)Google Scholar
  97. 97.
    NET, The NET Team, NET Predesign Report. Fusion Eng. Design 21, 3 (1993)Google Scholar
  98. 98.
    NET, The NET Team, NET Predesign Report, 111.2. The NET device—magnet system. Fusion Eng. Des. 21, 107 (1993)Google Scholar
  99. 99.
    S.G. Oh et al., Passive mitigation of impurity deposition on first mirrors using baffled duct; a case study at KSTAR, in ITPA Diagnostics Topical Group, 33rd Meeting, 16–19 October 2017, St-Paul-lez-Durance (2017)Google Scholar
  100. 100.
    S.D. Pinches et al., Energetic ions in ITER plasmas. Phys. Plasmas 22, 021807 (2015)ADSGoogle Scholar
  101. 101.
    R.A. Pitts et al., A full tungsten divertor for ITER: physics issues and design status. J. Nucl. Mater. 438, S48 (2013)Google Scholar
  102. 102.
    A. Portone et al., ITER plasma vertical stabilization, paper IT/2-4a, in Proceedings of 22nd IAEA Fusion Energy Conference, Geneva (2008)Google Scholar
  103. 103.
    M. Prokopas et al., ITER Control System Model: a full-scale simulation platform for the CODAC infrastructure. Fusion Eng. Des. 128, 86 (2018)Google Scholar
  104. 104.
    R. Prokopec et al., Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems. Fusion Eng. Des. 84, 1544 (2009)Google Scholar
  105. 105.
    R. Prokopec et al., Radiation resistant insulation systems for the ITER toroidal field coils. Energy Environ. Eng. 3(3), 50 (2015)Google Scholar
  106. 106.
    B. Puccio et al., The beam interlock system for the LHC, CERN engineering specification LHC-CIB-ES-0001-00-10 (2005)Google Scholar
  107. 107.
    A.R. Raffray et al., The ITER blanket system design challenge. Nucl. Fusion 54, 033004 (2014)ADSGoogle Scholar
  108. 108.
    H. Rajainmaki et al., The ITER pre-compression rings—a first in cryogenic composite technology, in Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference—ICMC, Vol. 60, Anchorage, Alaska, June 2013, AIP Conference Proceedings, vol. 1574, p. 92 (2014)Google Scholar
  109. 109.
    E. Rajendra Kumar, K.N. Vyas, T. Jayakumar, Overview of LLCB TBM design and R&D activities in India. Fusion Eng. Des. 109–111, 1522 (2016)Google Scholar
  110. 110.
    R. Reichle et al., Radiation hardness test of mica bolometers for ITER in JMTR, in Proceedings of 28th European Conference on Controlled Fusion and Plasma Physics, Funchal, 2001, Europhysics Conference Abstracts Vol. 25A 1293, EPS, Mulhouse (2001)Google Scholar
  111. 111.
    I. Ricapito et al., Current design of the European TBM systems and implications on DEMO breeding blanket. Fusion Eng. Des. 109–111, 1326 (2016)Google Scholar
  112. 112.
    A.V. Rogov, YuV Kapustin, A.G. Alekseev, Application of the penning discharge for cleaning mirrors in optical diagnostics of the ITER. Instrum. Exp. Tech. 58, 161 (2015)Google Scholar
  113. 113.
    M. Rubel et al., Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak. J. Nucl. Mater. 438, S1204 (2013)Google Scholar
  114. 114.
    J.-F. Salavy et al., Must we use ferritic steel in TBM? Fusion Eng. Des. 85, 1896 (2010)Google Scholar
  115. 115.
    R. Scannell et al., A 130 point Nd:YAG Thomson scattering diagnostic on MAST. Rev. Sci. Instrum. 81, 10D520 (2010)Google Scholar
  116. 116.
    Y. Shimomura, for the ITER Central Team and Home Teams, ITER technology R&D. Fusion Eng. Des. 55, 97 (2001)Google Scholar
  117. 117.
    D. Shiraki et al., Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D. Phys. Plasmas 23, 062516 (2016)Google Scholar
  118. 118.
    A.C.C. Sips et al., Progress in preparing scenarios for the operation of the International Thermonuclear Experimental Reactor. Phys. Plasmas 22, 021804 (2015)ADSGoogle Scholar
  119. 119.
    D.B. Smathers et al., Production of tin core modified jelly roll cable for the MIT Multipurpose Coil. IEEE Trans. Magn. 24, 1131 (1988)ADSGoogle Scholar
  120. 120.
    J.A. Snipes et al., Physics of the conceptual design of the ITER plasma control system. Fusion Eng. Des. 89, 507 (2014)Google Scholar
  121. 121.
    M.M. Steeves et al., The US-DPC, a poloidal coil test insert for the Japanese Demonstration Poloidal Coil Test Facility. IEEE Trans. Magn. 24, 1307 (1988)ADSGoogle Scholar
  122. 122.
    A. Suarez et al., Neutronic analysis for bolometers in ITER. Fusion Eng. Des. 88, 1395 (2013)Google Scholar
  123. 123.
    R. Toschi et al., Next European Torus objectives, general requirements, and parameter choices. Fusion Technol. 14, 19 (1988), including: (1) M. Chazalon et al., Next European Torus general description and layout. Fusion Technol. 14, 49 (1988); (2) E. Salpietro et al., Next European Torus basic machine. Fusion Technol. 14, 58 (1988); (3) E. Salpietro et al., Next European Torus operation cycle. Fusion Technol. 14, 145 (1988)Google Scholar
  124. 124.
    J.G. van der Laan et al., Radwaste management aspects of the test blanket systems in ITER. Fusion Eng. Des. 109–111, 222 (2016)Google Scholar
  125. 125.
    M. van Zeeland et al., Tests of a full-scale ITER toroidal interferometer and polarimeter (TIP) prototype on the DIII-D tokamak. Rev. Sci. Intrum. 89, 10B102 (2018)Google Scholar
  126. 126.
    A. Wallander et al., ITER instrumentation and control—status and plans. Fusion Eng. Des. 85, 529 (2010)Google Scholar
  127. 127.
    A. Wallander et al., Baseline architecture of ITER control system. IEEE Trans. Nucl. Sci. 58, 1433 (2011)ADSGoogle Scholar
  128. 128.
    C. Watts et al., Design development of ITER divertor Langmuir probes, in HTPD2018 22nd Topical Conference on High Temperature Plasma Diagnostics, San Diego, California, April 2018, paper 8.22 (2018)Google Scholar
  129. 129.
    P.D. Weng et al., The engineering design of the HT-7U tokamak. Fusion Eng. Des. 58–59, 827 (2001)Google Scholar
  130. 130.
    A. Widdowson et al., Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall. J. Nucl. Mater. 390–391, 988 (2009)Google Scholar
  131. 131.
    Y. Yamada et al., Development of Nb3Al superconductors for International Thermonuclear Experimental Reactor (ITER). Cryogenics 39, 115 (1999)ADSGoogle Scholar
  132. 132.
    M. Zmitko et al., The European ITER Test Blanket Modules: EUROFER97 material and TBM’s fabrication technologies development and qualification. Fusion Eng. Des. 124, 767 (2017)Google Scholar
  133. 133.
    H. Zohm et al., Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX Upgrade. Nucl. Fusion 39, 577 (1999)ADSGoogle Scholar

Copyright information

© The ITER Organization 2019

Authors and Affiliations

  • David J. Campbell
    • 1
    • 7
    Email author
  • Tsuyoshi Akiyama
    • 2
  • Robin Barnsley
    • 1
  • Michele Bassan
    • 3
  • Larry R. Baylor
    • 4
  • Luciano Bertalot
    • 1
  • Frédéric Escourbiac
    • 1
  • Luciano M. Giancarli
    • 1
  • Philippe Gitton
    • 1
  • Julio Guirao
    • 1
  • Martin Kocan
    • 1
  • Vitaly Krasilnikov
    • 5
  • Uron Kruezi
    • 1
  • Michael Lehnen
    • 1
  • So Maruyama
    • 1
  • Yunxing Ma
    • 6
  • Mario Merola
    • 1
  • Neil Mitchell
    • 1
  • C. Spencer Pitcher
    • 1
  • A. René Raffray
    • 1
  • Roger Reichle
    • 1
  • Pavel Shigin
    • 1
  • Antoine Sirinelli
    • 1
  • Victor Udintsev
    • 1
  • Jaap G. van der Laan
    • 1
  • George Vayakis
    • 1
  • Anders Wallander
    • 1
  • Michael Walsh
    • 1
  • Christopher Watts
    • 1
  • the ITER Organization, Domestic Agencies and ITER Collaborators
  1. 1.ITER OrganizationSt-Paul-lez-Durance CedexFrance
  2. 2.National Institute for Fusion ScienceTokiJapan
  3. 3.ITRE srlCampodarsegoItaly
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA
  5. 5.Tokamak Energy LtdOxonUK
  6. 6.Fircroft FranceVersaillesFrance
  7. 7.MunichGermany

Personalised recommendations