Advertisement

Journal of Fusion Energy

, Volume 38, Issue 1, pp 113–124 | Cite as

Present State of Chinese Magnetic Fusion Development and Future Plans

  • Jiangang LiEmail author
  • Yuanxi Wan
Original Research
  • 297 Downloads

Abstract

Chinese magnetic confinement fusion (MCF) development has made significant progress during the past decade. With successful construction and operation of the EAST superconducting tokamak, China is playing a key role in advanced steady-state operations towards the next step ITER. The Chinese Fusion Engineering Testing Reactor (CFETR) is the next device for the Chinese MCF program which aims to bridge the gaps between the fusion experiment ITER and the demonstration reactor DEMO. Fusion power of CFETR will be in the range of 200 MW to over 1 GW. It will be operated in two phases: Steady-state operation and tritium self-sustainment will be the two key issues for the first phase with a modest fusion power up to 200 MW. The second phase aims for DEMO validation with a fusion power over 1 GW. The Chinese government has approved to proceed with the CFETR engineering design, and the project started on December 2017. Roadmap of Chinese MCF, gaps for construction and operation of CFETR, efforts to fill these gaps and speedup the fusion energy application in China are presented.

Keywords

Fusion Tokamak Reactor 

Notes

Acknowledgements

Funding was provided by Institute of Plasma Physics, Chinese Academy of Science.

References

  1. 1.
    R.J. Hawryluk, S. Batha, W. Blanchard et al., Rev. Mod. Phys. 70, 537–587 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M. Keilhacker, M.L. Watkins, JET Team, Nucl. Fusion 39, 209–234 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    F.Villone et al., in 34th EPS Conference Plasma Physics, Warsaw, Poland, vol. 31F, P-5.126 (2007)Google Scholar
  4. 4.
    E. Joffrin et al., in 23nd IAEA Fusion Energy Conference, Daejeon, Korea, EXC/1-1 (2010)Google Scholar
  5. 5.
    N. Oyama, A. Isayama, G. Matsunaga et al., Nucl. Fusion 49, 065026 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Fujiwara et al., Nucl. Fusion 40, 1157 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Wan Yuanxi et al., Plasma Sci. Technol 8, 253 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Li et al., Nucl. Fusion 51, 094007 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Lee et al., Nucl. Fusion 40, 575 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kim et al., Phys. Rev. Lett. 72, 2199 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    ITER Physics, Nucl. Fusion 39, 2137 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    ITER Physics, Nucl. Fusion 47, S1 (2007)CrossRefGoogle Scholar
  14. 14.
    L.Y. Chang et al., Chin. Phys. Lett. 7, 16 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    J. Boliang et al., Nuclear Fusion Plasma Phys. 1986-03Google Scholar
  16. 16.
    J.G. Li et al., in 15th IAEA, IAEA-CN-GO/AS-II 2, Oct 1994Google Scholar
  17. 17.
    HL-1M TEAM, in Fusion Energy 1996 (Proceedings of 16th International Conference Montreal, 1996), vol. 1, IAEA, Vienna (1997), p. 693Google Scholar
  18. 18.
    Y. Wan, Nucl. Fusion 40, 1057–1068 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    J. Li et al., in Proceedings of 17th IAEA Conference on Fusion Energy (Yokahama, Japan, 1998)Google Scholar
  20. 20.
    X.R. Duan et al., Nucl. Fusion 50, 095011 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Xu et al., Nucl. Fusion 55, 104022 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    B.N. Wan et al., Nucl. Fusion 45, S132 (2005)CrossRefGoogle Scholar
  23. 23.
    X. Gao et al., Nucl. Fusion 47, 1353 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    W.L. Zhong et al., Phys. Rev. Lett. 117, 045001 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    W. Chen et al., Nucl. Fusion 49, 075022 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    X.R. Duan et al., Nucl. Fusion 57, 102013 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    W.L. Zhong et al., Plasma Phys. Control. Fusion 59, 014030 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ekedahl et al., in 2016 IAEA Fusion Energy Conference (Kyoto, Japan) EX/P7-34Google Scholar
  30. 30.
    B.N. Wan, Nucl. Fusion 57, 102019 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    H.Y. Guo et al., Nucl. Fusion 54, 013002 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    J.S. Hu et al., Phys. Rev. Lett. 114, 055001 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    J. Li, H.Y. Guo et al., Nat. Phys. 9, 817 (2013)CrossRefGoogle Scholar
  34. 34.
    A.M. Garofalo et al., Nucl. Fusion 55, 123025 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    B. Wan et al., IEEE Trans. Plasma Sci. 42, 495–502 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Y.T. Song et al., IEEE Trans. Plasma Sci. 42, 503–509 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    V. Chan et al., Nucl. Fusion 55, 023017 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Wan, J. Li, Y. Liu, Nucl. Fusion 57, 102009 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    J.X. Zheng et al., IEEE Trans. Appl. Supercond. 26(7), 4205505 (2016)Google Scholar
  40. 40.
    Y.T. Song et al., Fusion Eng. Des. 89, 2331–2335 (2014)CrossRefGoogle Scholar
  41. 41.
    A.Y. Cheng et al., Plasma Sci. Technol 18(2), 202–205 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    X. Jian et al., Nucl. Fusion 57, 046012 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    J.L. Chen et al., Plasma Phys. Controll. Fusion 59, 075005 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    S.H. Wang et al., Fusion Eng. Des. 112, 148–155 (2016)CrossRefGoogle Scholar
  45. 45.
    K.C. Jiang et al., Fusion Eng. Des. 114, 57–71 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Li et al., Fusion Eng. Des. 113, 37–42 (2016)CrossRefGoogle Scholar
  47. 47.
    Z.X. Li, Activities on He-cooled ceramic blanket for CFETR. Presented at Technical exchange meeting on CFETR and EU-DEMO fusion reactor design, 19–22 Jan 2016, Garching, GermanyGoogle Scholar
  48. 48.
    作者:Q. Zhu, J. Li, S. Liu, Plasma Sci. Technol. 18, 775–780 (2016)Google Scholar
  49. 49.
    L. Chen, Y. Chen, K. Huang et al., Fusion Eng. Des. 106, 1–8 (2016)CrossRefGoogle Scholar
  50. 50.
    G.S. Li et al., Rev. Sci. Instrum. 87, 11D401 (2016)CrossRefGoogle Scholar
  51. 51.
    F. Wang, Y. Chen, L. Hu et al., J. Fusion Energ. 34, 1077–1087 (2015)CrossRefGoogle Scholar
  52. 52.
    UKAEA September 2007 (revised/improved version of original table in UKAEA FUS 521, 2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Plasma PhysicsChinese Academy of ScienceHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations