Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1575–1581 | Cite as

Adsorption of CO2 and Ethanol by a Spherical Activated Carbon in a Heat Pump

  • K. UddinEmail author
  • A. Pal
  • K. Thu
  • B. B. Saha
Article
  • 5 Downloads

A promising adsorbent representing a phenol resin activated with potassium hydroxide, which can be used in innovative next-generation adsorption cooling and heating pump systems, is proposed.

Keywords

activated carbon adsorbent carbon dioxide ethanol heat pump phenol resin uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. W. Wang, R. Z. Wang, and R. G. Oliveira, A review on adsorption working pairs for refrigeration, Renew. Sustain. Energy Rev., 13, 518–534 (2009).CrossRefGoogle Scholar
  2. 2.
    B. B. Saha, E. C. Boelman, and T. Kashiwagij, Computational anaysis of an advanced adsorption–refrigeration cycle, Energy, 20, 983–994 (1995).CrossRefGoogle Scholar
  3. 3.
    B. B. Saha, E. C. Boelman, and T. Kashiwagi, Computer simulation of a silica gel water adsorption refrigeration cycle –– the influence of operating conditions on cooling output and COP, ASHRAE Trans., 101, 348–357 (1995).Google Scholar
  4. 4.
    B. B. Saha, S. Koyama, J. B. Lee, K. Kuwahara, K. C. A. Alam, Y. Hamamoto, A. Akisawa, and T. Kashiwagi, Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller, Int. J. Multiphase Flow., 29, 1249–1263 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Uyun, T. Miyazaki, Y. Ueda, and A. Akisawa, Experimental investigation of a three-bed adsorption refrigeration chiller employing an advanced mass recovery cycle, Energies, 2, 531–544 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Z. I. Khan, B. B. Saha, K. C. A. Alam, A. Akisawa, and T. Kashiwagi, Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery, Renew. Energy, 32, 365–381 (2007).CrossRefGoogle Scholar
  7. 7.
    B. B. Saha, A. Akisawa, and T. Kashiwagi, Solar/waste heat driven two-stage adsorption chiller: The prototype, Renew. Energy, 23, 93–101 (2001).CrossRefGoogle Scholar
  8. 8.
    S. Mitra, P. Kumar, K. Srinivasan, and P. Dutta, Simulation study of a two-stage adsorber system, Appl. Therm. Eng., 72, 283–288 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Z. I. Khan, K. C. A. Alam, B. B. Saha, A. Akisawa, and T. Kashiwagi, Performance evaluation of multi-stage, multibed adsorption chiller employing re-heat scheme, Renew. Energy, 33, 88–98 (2008).CrossRefGoogle Scholar
  10. 10.
    B. B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K. C. Ng, and H. T. Chua, Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system, Int. J. Refrig., 26, 749–757 (2003).CrossRefGoogle Scholar
  11. 11.
    K. Uddin, T. Miyazaki, S. Koyama, and B. B. Saha, Performance investigation of adsorption–compression hybrid refrigeration systems, Int. J. Air-Conditioning Refrig., 21, No. 4, 1350024-12 (2013).CrossRefGoogle Scholar
  12. 12.
    I. I. El-Sharkawy, K. Uddin, T. Miyazaki, B. B. Saha, S. Koyama, H.-S. Kil, S.-H. Yoon, and J. Miyawaki, Adsorption of ethanol onto phenol resin based adsorbents for developing next generation cooling systems, Int. J. Heat Mass Transf., 81, 171–178 (2015).CrossRefGoogle Scholar
  13. 13.
    I. I. El-Sharkawy, K. Uddin, T. Miyazaki, B. B. Saha, S. Koyama, J. Miyawaki, and S.-H. Yoon, Adsorption of ethanol onto parent and surface treated activated carbon powders, Int. J. Heat Mass Transf., 73, 445–455 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Pal, H.-S. Kil, S. Mitra, K. Thu, B. B. Saha, S.-H. Yoon, J. Miyawaki, T. Miyazaki, and S. Koyama, Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons, Appl. Therm. Eng., 122, 389–397 (2017).CrossRefGoogle Scholar
  15. 15.
    A. Pal, K. Thu, S. Mitra, I. I. El-Sharkawy, B. B. Saha, H.-S. Kil, S.-H. Yoon, and J. Miyawaki, Study on biomass derived activated carbons for adsorptive heat pump application, Int. J. Heat Mass Transf., 110, 7–19 (2017).CrossRefGoogle Scholar
  16. 16.
    Magnetic suspension balances, www.rubotherm.com.
  17. 17.
    F. Dreisbach and H. W. Lösch, Magnetic suspension balance for simultaneous measurement of a sample and density of the measuring fluid, J. Therm. Anal. Calorim., 62, 515–521 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Uddin, I. I. El-Sharkawy, T. Miyazaki, S. Koyama, H.-S. Kil, J. Miyawaki, and S.-H. Yoon, Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content, Appl. Therm. Eng., 72, 211–218 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Institute for Carbon-Neutral Energy ResearchKyushu UniversityFukuokaJapan
  2. 2.Faculty of PhysicsJagannath UniversityDhakaBangladesh
  3. 3.Green Asia Education CenterKyushu UniversityFukuokaJapan
  4. 4.Mechanical Engineering DepartmentKyushu UniversityFukuokaJapan

Personalised recommendations