Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1509–1516 | Cite as

Vortex Intensification of Heat Transfer in Channels and Pipes with Periodic Elements of Discrete Roughness

  • S. A. IsaevEmail author
  • A. D. Chornyi
  • Yu. V. Zhukova
  • A. A. Vysotskaya
  • V. B. Kharchenko

A complex numerical investigation of vortex intensification of heat transfer in turbulent inhomogeneous medium flow in channels and pipes with periodic elements of discrete roughness has been carried out with the use of multiblock computational technologies, realized in a specialized package VP2/3, and of a modified model of transfer of shear stresses. As roughness elements use was made of asperities and grooves of different geometries, with air and transformer oil used as a working medium. The influence of the geometrical parameters of the indicated channels and pipes as well as of the regime parameters of the flow in them on their thermal and hydraulic efficiency has been analyzed in detail.


vortex intensification turbulent flow channels pipes discrete roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. A. Kalinin, G. A. Dreitser, I. Z. Koop, and A. S. Myakochin, Effective Heat Transfer Surfaces [in Russian], Énergoatomizdat, Moscow (1998).Google Scholar
  2. 2.
    A. I. Leontiev (Ed.), Vortex Technologies for Power Engineering [in Russian], Izd. Dom MÉI, Moscow (2017).Google Scholar
  3. 3.
    G. A. Dreitser, S. A. Isaev, and I. E. Lobanov, Calculation of convective heat transfer in a pipe with periodic protrusions, Vestn. MAI, 11, No. 2, 28–35 (2004).Google Scholar
  4. 4.
    G. A. Dreitser, S. A. Isaev, and I. E. Lobanov, Calculation of convective heat transfer in a pipe with vortex generators periodically disposed on the surface, Teplofi z. Vys. Temp., 43, No. 2, 223–230 (2005).Google Scholar
  5. 5.
    Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leontiev, Numerical Simulation of Vortex Intensifi cation of Heat Transfer in Pipe Packages [in Russian], Sudostroenie, St. Petersburg (2005).Google Scholar
  6. 6.
    S. A. Isaev, E. Leonardi, V. Timchenko, and A. E. Usachov, Vortical investigation of heat transfer in microchannels with oval dimples, Heat Transf. Res., 41, No. 4, 413–424 (2010).CrossRefGoogle Scholar
  7. 7.
    S. A. Isaev, A. I. Leontiev, Yu. V. Zhukova, P. A. Baranov, M. A. Gotovskii, and A. E. Usachov, Numerical simulation of vortex heat transfer enhancement in transformer oil flow in a channel with one-row spherical dimples, Heat Transf. Res., 42, No. 7, 613–628 (2011).CrossRefGoogle Scholar
  8. 8.
    S. A. Isaev, Experience of application of SST-model-2003 with correction on streamline curvature according to Rodi–Leschziner–Isaev approach for (U)RANS calculations of separated and vortex sub- and supersonic flows, in: Proc. AIP Conf., 2027, 020015.1–7 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Isaev
    • 1
    Email author
  • A. D. Chornyi
    • 2
  • Yu. V. Zhukova
    • 2
  • A. A. Vysotskaya
    • 1
  • V. B. Kharchenko
    • 1
  1. 1.St. Petersburg State University of Civil AviationSt. PetersburgRussia
  2. 2.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations