Journal of Engineering Physics and Thermophysics

, Volume 92, Issue 6, pp 1406–1414 | Cite as

Mathematical Model of the Effect of Self-Preservation of Gas Hydrates

  • V. A. VlasovEmail author

A diffusion model of dissociation of a plane layer of gas hydrate into ice and gas has been presented, which permits modeling the effect of self-preservation of gas hydrates. In this model, the gas-hydrate dissociation into ice and gas is described with account taken of the internal kinetics of the process and of the pore structure of the formed ice layer. Calculated data obtained within the framework of a quasi-stationary approximation for the cases of dissociation of plane layers of methane hydrate and carbon-dioxide hydrate into ice and gas have been given as an example.


gas hydrate self-preservation effect diffusion chemical kinetics mathematical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, and X.-S. Li, Review of natural gas hydrates as an energy resource: prospects and challenges, Appl. Energy, 162, 1633–1652 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Konno, T. Fujii, A. Sato, K. Akamine, M. Naiki, Y. Masuda, K. Yamamoto, and J. Nagao, Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production, Energy Fuels, 31, No. 3, 2607–2616 (2017).CrossRefGoogle Scholar
  3. 3.
    G. G. Tsypkin, Formation of carbon dioxide hydrate at the injection of carbon dioxide into a depleted hydrocarbon field, Fluid Dyn., 49, No. 6, 789–795 (2014).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. Sh. Shagapov, N. G. Musakaev, and M. K. Khasanov, Formation of gas hydrates in a porous medium during an injection of cold gas, Int. J. Heat Mass Transf., 84, 1030–1039 (2015).CrossRefGoogle Scholar
  5. 5.
    M. K. Khasanov, Investigation of regimes of gas hydrate formation in a porous medium, partially saturated with ice, Thermophys. Aeromech., 22, No. 2, 245–255 (2015).CrossRefGoogle Scholar
  6. 6.
    É. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, Assessing the possibility of underground storage of natural-gas hydrates in the permafrost zone, Kriosfera Zemli, 19, No. 4, 64–74 (2015).Google Scholar
  7. 7.
    V. M. Vorotyntsev, V. M. Malyshev, I. V. Vorotyntsev, and S. V. Battalov, Improving the efficiency of gas hydrate crystallization due to the application of gas separation membranes, Theor. Found. Chem. Eng., 50, No. 4, 459–468 (2016).CrossRefGoogle Scholar
  8. 8.
    M. K. Khasanov and V. Sh. Shagapov, Methane gas hydrate decomposition in a porous medium upon injection of a warm carbon dioxide gas, J. Eng. Phys. Thermophys., 89, No. 5, 1123–1133 (2016).CrossRefGoogle Scholar
  9. 9.
    V. Sh. Shagapov, A. S. Chiglintseva, and S. V. Belova, On the theory of formation of a gas hydrate in a heat-insulated space compacted with membrane, J. Eng. Phys. Thermophys., 90, No. 5, 1147–1161 (2017).CrossRefGoogle Scholar
  10. 10.
    G. Rehder, R. Eckl, M. Elfgen, A. Falenty, R. Hamann, N. Kähler, W. F. Kuhs, H. Osterkamp, and C. Windmeier, Methane hydrate pellet transport using the self-preservation effect: a techno-economic analysis, Energies, 5, No. 7, 2499–2523 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Falenty, W. F. Kuhs, M. Glockzin, and G. Rehder, "Self-preservation" of CH4 hydrates for gas transport technology: Pressure–temperature dependence and ice microstructures, Energy Fuels, 28, No. 10, 6275–6283 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci., 118, 208–213 (2014).CrossRefGoogle Scholar
  13. 13.
    H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee, and P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates, Appl. Energy, 216, 262–285 (2018).CrossRefGoogle Scholar
  14. 14.
    V. A. Istomin, V. S. Yakushev, N. A. Makhonina, V. G. Kwon, and E. M. Chuvilin, Self-preservation phenomenon of gas hydrates, Gas Ind. Russ., No. 4, 16–27 (2006).Google Scholar
  15. 15.
    O. S. Subbotin, V. R. Belosludov, E. N. Brodskaya, E. M. Piotrovskaya, and V. V. Sizov, A computer simulation of the mechanism of self-conservation of gas hydrates, Russ. J. Phys. Chem. A, 82, No. 8, 1303–1308 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Falenty and W. F. Kuhs, "Self-preservation" of CO2 gas hydrates–surface microstructure and ice perfection, J. Phys. Chem. B, 113, No. 49, 15975–15988 (2009).CrossRefGoogle Scholar
  17. 17.
    H. Ohno, O. Nishimura, K. Suzuki, H. Narita, and J. Nagao, Morphological and compositional characterization of self-preserved gas hydrates by low-vacuum scanning electron microscopy, Phys. Chem. Chem. Phys., 12, No. 9, 1661–1665 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Sun, Y. Shimono, S. Takeya, and R. Ohmura, Preservation of carbon dioxide clathrate hydrate at temperatures below the water freezing point under atmospheric pressure, Ind. Eng. Chem. Res., 50, No. 24, 13854–13858 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Hachikubo, S. Takeya, E. Chuvilin, and V. Istomin, Preservation phenomena of methane hydrate in pore spaces, Phys. Chem. Chem. Phys., 13, No. 39, 17449–17452 (2011).CrossRefGoogle Scholar
  20. 20.
    V. E. Nakoryakov and S. Ya. Misyura, The features of self-preservation for hydrate systems with methane, Chem. Eng. Sci., 104, 1–9 (2013).CrossRefGoogle Scholar
  21. 21.
    A. S. Stoporev, A. Yu. Manakov, L. K. Altunina, A. V. Bogoslovsky, L. A. Strelets, and E. Ya. Aladko, Unusual self-preservation of methane hydrate in oil suspensions, Energy Fuels, 28, No. 2, 794–802 (2014).CrossRefGoogle Scholar
  22. 22.
    V. E. Nakoryakov and S. Ya. Misyura, Kinetics of methane hydrate dissociation, Dokl. Phys. Chem., 464, No. 2, 244–246 (2015).CrossRefGoogle Scholar
  23. 23.
    V. P. Mel’nikov, L. S. Podenko, A. N. Nesterov, A. O. Drachuk, N. S. Molokitina, and A. M. Reshetnikov, Self-preservation of methane hydrates produced in "dry water," Dokl. Chem., 466, No. 2, 53–56 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Takeya, S. Muromachi, Y. Yamamoto, H. Umeda, and S. Matsuo, Preservation of CO2 hydrate under different atmospheric conditions, Fluid Phase Equilibria, 413, 137–141 (2016).CrossRefGoogle Scholar
  25. 25.
    É. D. Ershov, Yu. P. Lebedenko, E. M. Chuvilin, V. A. Istomin, and V. S. Yakushev, Features of the existence of gas hydrates in the cryolithic zone, Dokl. Akad. Nauk SSSR, 321, No. 4, 788–791 (1991).Google Scholar
  26. 26.
    V. S. Yakushev, E. V. Perlova, and N. A. Makhonina, Metastable (relict) gas hydrates: occurrence, resources, and prospects for utilization, Kriosfera Zemli, 9, No. 1, 68–72 (2005).Google Scholar
  27. 27.
    V. Sh. Shagapov and B. I. Tazetdinov, On the theory of the decomposition of a metastable gas hydrate, Theor. Found. Chem. Eng., 47, No. 4, 388–396 (2013).CrossRefGoogle Scholar
  28. 28.
    E. P. Zaporozhets and N. A. Shostak, Adsorption-energy model of the kinetics of the formation and dissociation of gas hydrates, Theor. Found. Chem. Eng., 49, No. 3, 306–312 (2015).CrossRefGoogle Scholar
  29. 29.
    T. Komai, S.-P. Kang, J.-H. Yoon, Y. Yamamoto, T. Kawamura, and M. Ohtake, In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point, J. Phys. Chem. B, 108, No. 23, 8062–8068 (2004).CrossRefGoogle Scholar
  30. 30.
    C.-Y. Sun and G.-J. Chen, Methane hydrate dissociation above 0oC and below 0oC, Fluid Phase Equilibria, 242, No. 2, 123–128 (2006).CrossRefGoogle Scholar
  31. 31.
    V. A. Vlasov, Diffusion model of gas hydrate dissociation into ice and gas: simulation of the self-preservation effect, Int. J. Heat Mass Transf., 102, 631–636 (2016).CrossRefGoogle Scholar
  32. 32.
    V. A. Vlasov, Phenomenological diffusion theory of formation of gas hydrate from ice powder, Theor. Found. Chem. Eng., 46, No. 6, 576–582 (2012).CrossRefGoogle Scholar
  33. 33.
    V. A. Vlasov, Formation and dissociation of gas hydrate in terms of chemical kinetics, React. Kinet. Mech. Catal., 110, No. 1, 5–13 (2013).CrossRefGoogle Scholar
  34. 34.
    V. A. Vlasov, Diffusion model of gas hydrate formation from ice, Heat Mass Transf., 52, No. 3, 531–537 (2016).CrossRefGoogle Scholar
  35. 35.
    V. Sh. Shagapov, A. S. Chiglintseva, and G. R. Rafikova, On quasistationary solution of the equation of gas diffusion in hydrate layer, Tomsk State Univ. J. Math. Mech., No. 48, 107–117 (2017).MathSciNetCrossRefGoogle Scholar
  36. 36.
    L. A. Stern, S. Circone, S. H. Kirby, and W. B. Durham, Anomalous preservation of pure methane hydrate at 1 atm, J. Phys. Chem. B., 105, No. 9, 1756–1762 (2001).CrossRefGoogle Scholar
  37. 37.
    W. F. Kuhs, G. Genov, D. K. Staykova, and T. Hansen, Ice perfection and onset of anomalous preservation of gas hydrates, Phys. Chem. Chem. Phys., 6, No. 21, 4917–4920 (2004).CrossRefGoogle Scholar
  38. 38.
    S. Circone, L. A. Stern, S. H. Kirby, W. B. Durham, B. C. Chakoumakos, C. J. Rawn, A. J. Rondinone, and Y. Ishii, CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate, J. Phys. Chem. B, 107, No. 23, 5529–5539 (2003).CrossRefGoogle Scholar
  39. 39.
    T. Ikeda-Fukazawa, K. Kawamura, and T. Hondoh, Mechanism of molecular diffusion in ice crystals, Mol. Simul., 30, Nos. 13–15, 973–979 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Earth Cryosphere InstituteTyumen Scientific Center of the Siberian Branch of the Russian Academy of SciencesTyumenRussia

Personalised recommendations