Advertisement

Method of Construction of Generalized Temperature Dependences of the Thermal Conductivity of Freons in Various States of Aggregation

  • B. A. Arutyunov
  • A. V. KozlovEmail author
THERMOPHYSICAL PROPERTIES
  • 3 Downloads

A method of construction of generalized dependences of the reduced thermal conductivity of Freons on their temperature on saturation lines of a liquid and a vapor and at a pressure of 0.1 MPa has been constructed, which is based on the principle of minimization of the Helmholtz free energy. Selection of the scale of the sought function and of its arguments was carried out from the characteristic-function minimum, which has permitted obtaining calculation formulas to determine the sought properties of the substances under study with an error not exceeding the experimental error.

Keywords

Freons Helmholtz free energy minimum thermal conductivity reduction scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Filippov, Methods of Calculation and Prediction of a Property of Substances [in Russian], Izd. MGU, Moscow (1988).Google Scholar
  2. 2.
    R. Reid, J. Prausnitz, and Th. Sherwood, The Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).Google Scholar
  3. 3.
    B. A. Arutyunov and A. B. Arutyunov, Thermodynamics and the Properties of Substances [in Russian], Izd. Moskovskogo Tekhnol. Univ., Moscow (2016).Google Scholar
  4. 4.
    V. A. Gruzdev, S. I. Shestova, and A. I. Shumskaya, Experimental investigation into the thermal conductivity of F-12 and F-21, in: Heat and Mass Transfer [in Russian], Vol. 7, Izd. ITMO, Minsk (1972), pp. 25–29.Google Scholar
  5. 5.
    V. Z. Geller, S. D. Artamonov, G. V. Zaporozhan, and V. G. Peredrii, Thermal conductivity of Freon-12, J. Eng. Phys. Thermophys., 27, No. 1, 842–846 (1974).CrossRefGoogle Scholar
  6. 6.
    O. B. Tsvetkov, Experimental determinations of the thermal conductivity of fluids by coaxial-cylinder apparatus, J. Test. Eval., 2, No. 4, 226–230 (1974).CrossRefGoogle Scholar
  7. 7.
    A. Kh. Sadykov, A. P. Brykov, and G. Kh. Mukhamedzyanov, Thermal conductivity of low-temperature Freons of the methane series, Teplo Massoobmen Khim. Tekhnol., Issue 3, Moscow (1975), pp. 31–34.Google Scholar
  8. 8.
    V. Z. Geller, S. F. Gorykin, and G. V. Zaporozhan, Thermal conductivity of Freons F-13V1 and F-23 over a wide range of state parameter, J. Eng. Phys. Thermophys., 29, No. 4, 1211–1216 (1975).CrossRefGoogle Scholar
  9. 9.
    N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii, Thermal Conductivity of Liquids and Gases [in Russian], Izd. Standartov, Moscow (1978).Google Scholar
  10. 10.
    W. H. Tauscher, Thermal conductivity of liquid refrigerants measured by an unsteady state hot wire method, Kaltetechnik–Klimatisirung, 19, No. 9, 288–292 (1967).Google Scholar
  11. 11.
    V. A. Gruzdev, A. I. Shestov, and V. A. Selin, Thermal conductivity of Freons, in: Thermophysical Properties of Freons [in Russian], Nauka, Novosibirsk (1969), pp. 62–69.Google Scholar
  12. 12.
    J. Yata, T. Minamiyama, and S. Tanaka, Measurement of thermal conductivity of liquid fluorocarbons, Int. J. Thermophys., 5, No. 2, 209–218 (1984).CrossRefGoogle Scholar
  13. 13.
    W. H. Djalalian, Messungen der Wärmeleitzahl von Flüssigkeiten mit einer stationären Hitzdrathmethode, Kaltetechnik–Klimatisirung, 18, No. 11, 410–415 (1966).Google Scholar
  14. 14.
    O. B. Tsvetkov, Investigation of thermal conductivity of liquid freons, J. Eng. Phys. Thermophys., 9, No. 6, 496–499 (1965).CrossRefGoogle Scholar
  15. 15.
    V. Z. Geller, Investigation of thermal conductivity of certain Freons of the methane series. Physical constants and the properties of substances, in: Thermophysical Properties of Substances and Materials [in Russian], Issue 8, GSSD, Moscow (1975), pp. 162–176.Google Scholar
  16. 16.
    V. Z. Geller and V. G. Peredrii, Investigation of the thermal conductivity of Freon-21 and Freon-14, in: Refrigeration Engineering and Technology [in Russian], Issue 14, Tekhnika, Kiev (1974), pp. 102–108.Google Scholar
  17. 17.
    V. A. Gruzdev and S. I. Shestova, Experimental investigation into the thermal conductivity of Freons-11, 12, 13, 21, 22, and 23, in: Use of Freons in Power Facilities [in Russian], Izd. Inst. Teplofiziki SO AN SSSR, Novosibirsk (1975), pp. 145–181.Google Scholar
  18. 18.
    R. W. Powell and A. P. Challoner, Thermal conductivity of refrigerants, in: Proc. 10th Int. Congress on Refrigeration, Copenhagen, Denmark (1959), Vol. 1, pp. 382–387.Google Scholar
  19. 19.
    W. Markwood and A. Benning, Thermal conductivity and heat transmission coefficients of freon refrigerants, Refrig. Eng., 45, No. 2, 95–101 (1943).Google Scholar
  20. 20.
    Ya. A. Laptev, Investigation of the Thermal Conductivity of Gaseous Refrigerants and Their Mixtures, Candidate’s Dissertation in Technical Sciences, Leningrad (1979).Google Scholar
  21. 21.
    A. K. Voitenko and V. Z. Geller, Investigation of the thermal conductivity of Freon-115 in the critical region and near the liquid–vapor saturation line, Izv. Vyssh. Uchebn. Zaved., Neft′ Gaz, No. 2, 69–73 (1977).Google Scholar
  22. 22.
    R. Afshar and S. C. Saxena, Transport properties of freon-152a and freon-142b in the temperature range of 280–510 K, Int. J. Thermophys., 1, No. 1, 51–56 (1980).CrossRefGoogle Scholar
  23. 23.
    B. F. Grigoryev, S. V. Ilyushenko, V. Z. Geller, and M. A. Likhazky, Thermal conductivity of multicomponent working media used in cryogenic refrigeration system, Proc. I Asian Conf. on Thermophysical Properties, April 21–24, 1986, Beijing, China (1986), pp. 569–573.Google Scholar
  24. 24.
    U. Gross, Y. W. Song, and E. Hahne, Thermal conductivity of the new refrigerants R134a, R152a, and R123 measured by the transient hot-wire method, Int. J. Therm. Sci., 13, No. 6, 957–983 (1992).CrossRefGoogle Scholar
  25. 25.
    M. J. Assael, N. Malamataris, and L. Karagiannidis, Measurements of the thermal conductivity of refrigerants in the vapor phase, Int. J. Therm. Sci., 18, No. 2, 341–352 (1997).CrossRefGoogle Scholar
  26. 26.
    Y. Tanaka, M. Naka, and T. Makita, Thermal conductivity of gaseous HFC-134a, HFC-143a, HCFC-141b, and HCFC-142b, Int. J. Thermophys., 12, No. 6, 949–963 (1991).CrossRefGoogle Scholar
  27. 27.
    W. H. Tauscher, Thermal conductivity of several refrigerants on the liquid phase, ASHRAE J., 11, No. 1, 97–111 (1969).Google Scholar
  28. 28.
    L. Riedel, Neue Wärmeleitfähigkeitsmessungen an organischen Flüssigkeiten, Chem. Ing. Tech., 23, No. 13, 321–324 (1951).CrossRefGoogle Scholar
  29. 29.
    L. I. Cherneeva, Investigation of the thermal conductivity of Freon-113, Kholodil′naya Tekh., No. 1, 23–24 (1955).Google Scholar
  30. 30.
    O. B. Tsvetkov, Thermal Conductivity of Refrigerants [in Russian], Izd. Leningradskogo Univ., Leningrad (1984).Google Scholar
  31. 31.
    Yu. S. Chilipenok, Investigation of the Thermal Conductivity of Refrigerants, Candidate′s Dissertation in Technical Sciences, Leningrad (1977).Google Scholar
  32. 32.
    V. Z. Geller, S. I. Ivanchenko, and E. G. Porichanskii, Thermophysical properties of Freon-113, in: Heat and Mass Transfer, Vol. 9, Part 2 [in Russian], Izd. ITMO, Minsk (1972), pp. 489–497.Google Scholar
  33. 33.
    V. Z. Geller, Investigation of thermophysical properties of Freon-113, in: Physical Constants and the Properties of Substances and Materials [in Russian], Issue 7, GSSD, Moscow (1973), pp. 135–154.Google Scholar
  34. 34.
    G. V. Zaporozhan, L. G. Lenskii, V. P. Baryshev, and V. Z. Geller, Investigation of the thermal conductivity of Freons F-218 and F-115, Izv. Vyssh. Uchebn. Zaved., Énergetika, No. 10, 146–150 (1975).Google Scholar
  35. 35.
    ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, New York (1972).Google Scholar
  36. 36.
    W. H. Tauscher, Measurement of the thermal conductivity of liquid refrigerants by an unsteady state hot wire method, ASHRAE J., 11, No. 1, 97–104 (1969).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Russian Technological University (M. V. Lomonosov Institute of Fine Chemical Technologies)MoscowRussia

Personalised recommendations