Characteristics of Thermal Action on Porous Cellulose Acetate Composite Material

  • S. I. LazarevEmail author
  • Yu. M. Golovin
  • S. V. Kovalev
  • A. A. Levin

An analysis is given of the thermal action on an MGA-95 composite porous film cellulose acetate industrial prototype by differential scanning calorimetry. Investigation of an air-dry sample and a water-saturated sample indicates redistribution of the relation in the quantity of perfect crystal structures in crystallites having different values for the enthalpy of melting, which decreases for the low-temperature phase from 6.06 to 0.99 kJ/kg, and for the high-temperature phase, from 1.99 to 1.72 kJ kg. The total melting enthalpy of the endothermic peaks measures from 8.57 to 6.55 kJ/kg, which points to a reduction in the crystallinity of the water-saturated MGA-95 polymer composite film sample.


porous film crystallinity amorphism bound water differential-scanning calorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Kotov, G. A. Netesova, O. V. Peregonchaya, and I. V. Kuznetsova, Nonisothermal dehydration and desolvation of cation-exchange membranes, Sorb. Khromatogr. Protsessy, 10, Issue 2, 208-215 (2010).Google Scholar
  2. 2.
    V. N. Smagin, N. N. Zhurov, D. A. Yaroshevsky, and O. Y. Yevdokimov, Optimization of electrodialysis process at elevated temperatures, Desalination, 46, Nos. 1–3, 253-262 (1983).CrossRefGoogle Scholar
  3. 3.
    K. Onuki, G. J. Hwang, Arifal, and S. Shimizu, Presence of iodine at elevated temperature, J. Membr. Sci., 192, Nos. 1–2, 193-199 (2001).CrossRefGoogle Scholar
  4. 4.
    G. Pourcelly, V. V. Nikonenko, N. D. Pismenskaya, and A. V. Yaroslavtsev, Applications of charged membranes in separation, fuel cells, and emerging processes, in: Ionic Interactions in Natural and Synthetic Macromolecules, John Wiley & Sons, New Jersey (2012), pp. 761–816.Google Scholar
  5. 5.
    N. D. Pis′menskaya, V. V. Nikonenko, N. A. Mel’nik, G. Pourcelly, and C. Larchet, Influence of the characteristics of the ion-exchange membrane/solution boundary on mass transfer in intense current modes, Élektrokhimiya, 48, No. 6, 677–697 (2012).Google Scholar
  6. 6.
    N. G. Polyanskii and P. E. Tupulov, Thermal stability of ion-exchange resins, Usp. Khim., 11, Issue 12, 2250–2279 (1971).Google Scholar
  7. 7.
    P. E. Tupulov, Resistance of Ion-Exchange Membranes [in Russian], Khimiya, Moscow (1984).Google Scholar
  8. 8.
    G. Merle, M. Wessling, and D. C. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci., 377, Nos. 1–2, 1–35 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Naudy, F. Collette, F. Thominette, G. Gebel, and E. Espuche, Influence of hydrothermal aging on the gas and water transport properties of Nafion® membranes, J. Membr. Sci., 451, 293–304 (2014).CrossRefGoogle Scholar
  10. 10.
    I. Rubinstein and B. Zaltzman, Electro-osmotically induced convection at a permselective membrane, Phys. Rev. E, 62, No. 2, 2238–2251 (2000).CrossRefGoogle Scholar
  11. 11.
    N. Mishchuk, Concentration polarization of interface and non-linear electrokinetic phenomena, Adv. Colloid Interface Sci., 160, No. 2, 16–39 (2010).CrossRefGoogle Scholar
  12. 12.
    L. Dammak, C. Larchet, and D. Grande, Ageing of ion-exchange membranes in oxidant solutions, Sep. Purif. Technol., 69, No. 1, 43–47 (2009).CrossRefGoogle Scholar
  13. 13.
    R. Ghalloussi, W. Garcia-Vasquez, L. Chaabane , L. Dammak, C. Larchet, S. V. Deabate, E. Nevakshenova, V. Nikonenko, and D. Grande, Ageing of ion-exchange membranes in electrodialysis: A structural and physicochemical investigation, J. Membr. Sci., 436, 68–78 (2013).CrossRefGoogle Scholar
  14. 14.
    V. B. Korobov and V. I. Konovalov, Coupled heat and mass transfer in multistage electromembrane facilities for separating liquid systems, J. Eng. Phys. Thermophys., 65, No. 3, 917–933 (1993).CrossRefGoogle Scholar
  15. 15.
    V. I. Vasil’eva, N. D. Pis’menskaya, É. M. Akberova, and K. A. Nebavskaya, Influence of thermochemical action on the morphology and the degree of hydrophobicity of heterogeneous ion-exchange membranes, Zh. Fiz. Khim., 88, Nos. 7–8, 1114–1120 (2014).Google Scholar
  16. 16.
    M. Ray, K. Pal, A. Anis, and A. K. Banthia, Development and characterization of chitosan-based polymeric hydrogel membranes, Des. Monomers Polym., 13, No. 3, 193–206 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Xiao, D. M. Davenport, L. Ormsbee, and D. Bhattacharyya, Polymerization and functionalization of membrane pores for water related applications, Ind. Eng. Chem. Res., 54, 4174–4182 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Bischoff, G. Seide, and T. Gries, Analytical methods for polymers and polymer fibres, Gummi Fasern Kunststoffe, 69, No. 4, 210–216 (2016).Google Scholar
  19. 19.
    M. M. Meier, L. A. Kanis, and V. Soldi, Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent, Int. J. Pharm., 278, No. 1, 99–110 (2004).CrossRefGoogle Scholar
  20. 20.
    A. Bernal-Ballén, I. Kuritka, and P. Saha, Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate–PVA, Int. J. Polym. Sci., 2016, 1–12 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. I. Lazarev
    • 1
    Email author
  • Yu. M. Golovin
    • 1
  • S. V. Kovalev
    • 1
  • A. A. Levin
    • 1
  1. 1.Federal State Budgetary Educational Institution of Higher Education“Tambov State Technical University,”TambovRussia

Personalised recommendations