Synthesis of Reinforced Ceramic Matrix Composite Based on SiC and Nanocarbon Mesh

  • D. V. SoloveiEmail author
  • P. S. Grinchuk
  • H. M. Abuhimd
  • M. S. Alshahrani
  • M. V. Kiyashko
  • M. O. Stepkin
  • A. V. Akulich
  • A. A. Khort

Most modern matrix composite materials employ a variety of carbon nanofillers to improve their mechanical, electrical, and functional properties. Nanofillers are separately implanted into the initial ceramic matrix, which complicates the composite manufacturing technology and increases the final cost. In this work, the synthesis of nanocarbon fillers was carried out using high-temperature (1200°C) pyrolysis of phenolic resin directly inside the silicon carbide matrix. This results in the formation of a continuous 3D nanocarbon mesh uniformly binding and reinforcing the final product throughout the volume. The nanocarbon filler synthesized in the SiC matrix contains two allotropic carbon forms: nanographite and nanofibers. The study of the features of the carbon structure and morphology showed that during the pyrolysis the multilayered nanographite structures had been formed on the surface of SiC grains of average crystallite size equal to 20–35 nm. In the matrix pores, carbon nanofibers a few micrometers in length and 20–40 nanometers in diameter are synthesized. The reiteration of the phenolic resin impregnation–pyrolysis cycle increased the free carbon content from 4 to 7 wt.% for once and twice impregnated and pyrolyzed samples, respectively, and the Young's modulus, from 50.7 to 94.3 GPa. The obtained carbon content and structure are appropriate to produce C/SiC composite for application of ceramics and electrodes.


SiC nanographite carbon nanofibers ceramic matrix composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. P. Bansal, Handbook of Ceramic Composites, Kluwer Academic Publishers, Boston (2005).Google Scholar
  2. 2.
    E. A. Belyaeva and R. V. Konakova, Silicon Carbide: Technology, Properties, Application [in Russian], Scintillation Materials Inst., Khar’kov (2010).Google Scholar
  3. 3.
    L. Borchardt, C. Hoffmann, M. Oschatz, L. Mammitzsch, U. Petasch, M. Herrmann, and S. Kaskel, Preparation and application of cellular and nanoporous carbides, Chem. Soc. Rev., 15, No. 41, 5053–5067 (2012).Google Scholar
  4. 4.
    F. Jiang, Y. Liu, Y. Yang, Z.-R. Huang, D. Li, G.-L. Liu, and X.-J. Liu, Research progress of optical fabrication and surface-microstructure modification of SiC, J. Nanomater., 2012, ID 984048, 9 pp. (2012).Google Scholar
  5. 5.
    J. H. Eom, Y. W. Kim, and S. Raju, Processing and properties of macroporous silicon carbide ceramics. A review, J. Asian Ceram. Soc., 1, No. 3, 220–242 (2013).Google Scholar
  6. 6.
    N. P. Bansal and J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology, John Wiley & Sons Inc., Hoboken, New Jersey (2015).Google Scholar
  7. 7.
    W. Krenkel, B. Heidenreich, and R. Renz, C/C–SiC composites for advanced friction systems, Adv. Eng. Mater., 4, No. 7, 427–436 (2002).Google Scholar
  8. 8.
    A. Ortona, D. Trimis, V. Uhlig, R. Eder, S. Gianella, P. Fino, G. D’Amico, E. Boulet, C. Chazelas, T. Gramer, E. Cresci, J. G. Wunning, H. Altena, F. Beneke, and M. Debier, Si–SiC heat exchangers for recuperative gas burners with highly structured surface elements, Int. J. Appl. Ceram. Technol., 11, No. 5, 927–937 (2014).Google Scholar
  9. 9.
    M. Li, X. Zhou, H. Yang, S. Du, and Q. Huang, The critical issues of SiC materials for future nuclear systems, Scr. Mater., 143, 149–153 (2018).Google Scholar
  10. 10.
    W. J. Kim, D. Kim, and J. Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol., 45, No. 4, 565–572 (2013).Google Scholar
  11. 11.
    M. Belmonte, P. Miranzo, and M. I. Osendi, Contact damage resistant SiC/graphene nanofiller composites, J. Eur. Ceram. Soc., 38, No. 1, 41–45 (2018).Google Scholar
  12. 12.
    G. Choubey, L. Suneetha, and K. M. Pandey, Composite materials used in Scramjet — A review, Mater. Today: Proc., 5, No. 1, 1321–1326 (2018).Google Scholar
  13. 13.
    Y. Xie, L. Cheng, L. Li, H. Mei, and L. Zhang, Fabrication of laminated SiCw/SiC ceramic composites by CVI, J. Eur. Ceram. Soc., 33, No. 10, 1701–1706 (2013).Google Scholar
  14. 14.
    R. Sedlak, A. Kovalcikova, V. Girman, E. Mudra, P. Rutkowski, A. Dubiel, and J. Dusza, Fracture characteristics of SiC/graphene platelet composites, J. Eur. Ceram. Soc., 37, No. 14, 4307–4314 (2017).Google Scholar
  15. 15.
    H. Wangn, D. Zhu, Y. Mu, W. Zhou, and F. Luo, Effect of SiC/C preform densities on the mechanicaland electromagnetic interference shielding properties of dual matrix SiC/C–SiC composites, Ceram. Int., 41, No. 10, 14094–14100 (2015).Google Scholar
  16. 16.
    K. P. Tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese, and P. Fino, Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets, Mater. Sci. Eng. A, 659, 158–164 (2016).Google Scholar
  17. 17.
    P. Miranzo, M. Belmonte, and M. I. Osendi, From bulk to cellular structures: A review on ceramic/graphene filler composites, J. Eur. Ceram. Soc., 37, No. 12, 3649–3672 (2017).Google Scholar
  18. 18.
    K. Kollins, C. Przybyla, and M. S. Amer, Residual stress measurements in melt infiltrated SiC/SiC ceramic matrix composites using Raman spectroscopy, J. Eur. Ceram. Soc., 38, No. 7, 2784–2791 (2018).Google Scholar
  19. 19.
    J. Yina, S. H. Lee, L. Feng, Y. Zhu, X. Liu, Z. Huang, S. Y. Kim, and I. S. Han, The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process, Ceram. Int., 41, No. 3, 4145–4153 (2015).Google Scholar
  20. 20.
    O. Hanzel, R. Sedlak, J. Sedlaceka, V. Bizovska, R. Bystricky, V. Girman, A. Kovalcikova, J. Dusza, and P. Sajgalik, Anisotropy of functional properties of SiC composites with GNPs, GO and in-situ formed graphene, J. Eur. Ceram. Soc., 37, No. 12, 3731–3739 (2017).Google Scholar
  21. 21.
    R. Cano-Crespo, B. M. Moshtaghioun, D. Gomez-Garcia, A. Domínguez-Rodríguez, and R. Moreno, Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing phase: Is it feasible? J. Eur. Ceram. Soc., 37, No. 12, 3791–3796 (2017).Google Scholar
  22. 22.
    S. Tang and C. Hu, Design, preparation and properties of carbon fibers reinforced ultrahigh temperature ceramic composites for aerospace applications: A review, J. Mater. Sci. Technol., 33, No. 2, 117–130 (2017).Google Scholar
  23. 23.
    Y. Lu, Y. Wang, H. Shen, Z. Pan, Z. Huang, and L. Wu, Effects of temperature and duration on oxidation of ceramic composites with silicon carbide matrix and carbon nanoparticles, Mater. Sci. Eng. A, 590, 368–373 (2014).Google Scholar
  24. 24.
    N. Song, H. Liu, and J. Z. Fang, Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites, Ceram. Int., 42, No. 1A, 351–356 (2016).Google Scholar
  25. 25.
    C. Jimenez, K. Mergia, M. Lagos, P. Yialouris, I. Agote, V. Liedtke, S. Messoloras, Y. Panayiotatos, E. Padovano, C. Badini, C. Wilhelmi, and J. Barcena, Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems, J. Eur. Ceram. Soc., 36, No. 3, 443–449 (2016).Google Scholar
  26. 26.
    M. Petrus, J. Woźniak, T. Cygan, B. Adamczyk-Cieślak, M. Kostecki, and A. Olszyna, Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene, Ceram. Int., 43, No. 6, 5007–5013 (2017).Google Scholar
  27. 27.
    A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: A review, Int. Mater. Rev., 62, No. 5, 241–302 (2017).Google Scholar
  28. 28.
    H. Porwal, S. Grasso, and M. J. Reece, Review of graphene–ceramic matrix composites, Adv. Appl. Ceram., 112, No. 8, 443–454 (2013).Google Scholar
  29. 29.
    K. Markandan, J. K. Chin, and M. T. T. Tan, Recent progress in graphene based ceramic composites: A review, J. Mater. Res., 32, No. 1, 84–106 (2017).Google Scholar
  30. 30.
    J. K. Kwang, H. J. Seung, K. Young-Wook, J. Byung-Koog, and N. Toshiyuki, Conductive SiC ceramics fabricated by spark plasma sintering, Ceram. Int., 42, No. 5, 17892–17896 (2016).Google Scholar
  31. 31.
    L. Hanqin, Y. Xiumin, H. Zhengren, Z. Yuping, and S. Bizhe, Effect of sintering techniques on the microstructure of liquid-phase-sintered SiC ceramics, J. Eur. Ceram. Soc., 36, No. 8, 1863–1871 (2016).Google Scholar
  32. 32.
    A. Gardziella, L. A. Pilato, and A. Knop, Phenolic Resins. Chemistry, Applications, Standardization, Safety and Ecology, Springer-Verlag, Berlin (2000).Google Scholar
  33. 33.
    S. Lin, Z. Chen, L. Li, and C. Yang, Effect of impurities on the Raman scattering of 6H–SiC crystals, Mater. Res., 15, No. 6, 833–836 (2012).Google Scholar
  34. 34.
    E. López-Honorato, P. J. Meadows, J. Tan, and P. Xiao, Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition, J. Mater. Res., 23, No. 6, 1785–1796 (2008).Google Scholar
  35. 35.
    S. Sorieul, X. Kerbiriou, J. M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, Optical spectroscopy study of damage induced in 4H–SiC by swift heavy ion irradiation, J. Phys.: Condens. Matter, 24, 125801, 7 pp. (2012).Google Scholar
  36. 36.
    C. R. Choe and K. H. Lee, Effect of processing parameters on the mechanical properties of carbonized phenolic resin, Carbon, 30, No. 2, 247–249 (1992).Google Scholar
  37. 37.
    J. Wang, H. Jiang, and N. Jiang, Study on the pyrolysis of phenol–formaldehyde (PF) resin and modified PF resin, Thermochim. Acta, 496, Nos. 1–2, 136–142 (2009).Google Scholar
  38. 38.
    H. W. Wong, J. Peck, R. E. Bonomi, J. Assif, F. Panerai, G. Reinisch, J. Lachaud, and N. N. Mansour, Quantitative determination of species production from phenol–formaldehyde resin pyrolysis, Polym. Degrad. Stabil., 112, 122–131 (2015).Google Scholar
  39. 39.
    Z. L. Zhang, R. Brydson, Z. Aslam, S. Reddy, A. Brown, A. Westwood, and B. Rand, Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope, Carbon, 49, No. 15, 5049–5063 (2011).Google Scholar
  40. 40.
    P. Cheng, G. J. Qiao, D. C. Li, J. Q. Gao, H. J. Wang, and Z. H. Jin, RB-SiC ceramics derived from the phenol resin added with starch, Key Eng. Mater., 336–338, No. 11, 1144–1147 (2007).Google Scholar
  41. 41.
    M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphitebased systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1276–1290 (2007).Google Scholar
  42. 42.
    S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. Roy. Soc. Lond. A, 362, 2271–2288 (2004).Google Scholar
  43. 43.
    A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, Nos. 1–2, 47–57 (2007).Google Scholar
  44. 44.
    B. Zhang, Y. Xue, K. Gao, L. Qiang, Y. Yu, Z. Gong, A. Liang, J. Zhang, and B. Yang, Pencil sketch graphene films as solid lubricant on steel surface: observation of transition to graphene/amorphous carbon, Solid State Sci., 75, 71–76 (2018).Google Scholar
  45. 45.
    Y. M. Shulga, N. Y. Shulga, and Y. N. Parkhomenko, Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors, Mater. Electron. Eng., 17, No. 3, 157–186 (2014). Google Scholar
  46. 46.
    M. Llorens-Gamez and A. Serrano-Aroca, Low-cost advanced hydrogels of calcium alginate/carbon nanofibers with enhanced water diffusion and compression properties, Polymers, 10, 405, 11 pp. (2018).Google Scholar
  47. 47.
    A. Ambrosi and M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases, Phys. Chem. Chem. Phys., 12, 8943–8947 (2010).Google Scholar
  48. 48.
    S. Zhang, X. Gao, H. Dong, X. Ju, and Y. Song, In situ modulus and strength of carbon fibers in C/SiC composites, Ceram. Int., 43, No. 9, 6885–6890 (2017).Google Scholar
  49. 49.
    P. Kumar and V. K. Srivastava, Tribological behavior of C/C–SiC composites — A review, J. Adv. Ceram., 5, No. 1, 1–12 (2016).MathSciNetGoogle Scholar
  50. 50.
    D. Han, H. Mei, S. Xiao, K. G. Dassios, and L. Cheng, A review on the processing technologies of carbon nanotube/silicon carbide composites, J. Eur. Ceram. Soc., 38, No. 11, 3695–3708 (2018).Google Scholar
  51. 51.
    L. C. Pardini and M. L. Gregori, Modeling elastic and thermal properties of 2.5D carbon fiber and carbon/SiC hybrid matrix composites by homogenization method, J. Aerospace Technol. Manage., 2, No. 2, 183–194 (2010).Google Scholar
  52. 52.
    P. S. Grinchuk, M. V. Kiyashko, H. M. Abuhimd, M. S. Alshahrani, M. O. Stepkin, V. V. Toropov, A. A. Khort, D. V. Solovei, A. V. Akulich, M. D. Shashkov, and M. Y. Liakh, Effect of technological parameters on densification of reaction bonded Si/SiC ceramics, J. Eur. Ceram. Soc., 38, No. 15, 4815–4823 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. V. Solovei
    • 1
    Email author
  • P. S. Grinchuk
    • 1
  • H. M. Abuhimd
    • 2
  • M. S. Alshahrani
    • 2
  • M. V. Kiyashko
    • 1
  • M. O. Stepkin
    • 1
  • A. V. Akulich
    • 1
  • A. A. Khort
    • 1
  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  2. 2.National Nanotechnology Research CenterKing Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia

Personalised recommendations