Investigation of the Influence of Hydration on the Heat of Evaporation of Water From Sucrose Solutions

  • V. A. MikhailikEmail author
  • N. V. Dmitrenko
  • Yu. F. Snezhkin

An analysis has been made of the literature data on sucrose hydration. A platform of the most reliable experimental data has been selected. In a differential evaporation microcalorimeter, the specific heat of evaporation of water was measured in the process of continuous dehydration of a solution with an initial content of sucrose of 12.5 wt.%. Curves of the reduced specific evaporation heat versus the concentration of the solution at 40, 60, and 80°C were obtained. The influence of the degree of hydration of sucrose on the specific evaporation heat was determined. It has been shown that in the interval from the initial concentration of the solution, with degree of hydration of sucrose N = 20, to a content of sucrose of ~65 wt.% (N ~ 6), the specific evaporation heat grows from a value that is similar to the evaporation heat of pure water to values 3 to 4% higher than it. The most significant growth in the specific evaporation heat (7–10%) was recorded on removing water bonded to hydroxyl groups of sucrose in the equatorial position at N ≤ 6. The concept of strongly and weakly bound hydrate water in sucrose solutions is substantiated.


differential scanning calorimetry evaporation calorimetry sucrose hydration free and hydrate water evaporation heat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    World Production of Sugar in the New Season Will Reach Record Highs;
  3. 3.
    P. M. Silin, The Technology of Sugar [in Russian], 2nd revised and enlarged edn., Pishchevaya Promyshlennost′, Moscow (1967).Google Scholar
  4. 4.
    I. L. Kanunyats (Editor-in-Chief), Chemical Encyclopedia. In Five Volumes. Vol. 2. Daffa-Media X46 [in Russian], Sovetskaya Éntsiklopediya, Moscow (1990).Google Scholar
  5. 5.
    L. D. Bobrovnik, I. S. Gulyi, and V. M. Klimovich, Hydration and phase transformations of sucrose, Sakharnaya Prom., No. 6, 10–11 (1992).Google Scholar
  6. 6.
    A. T. Allen and R. M. Wood, Molecular association in the sucrose-water system, Sugar Technol. Rev., 2, No. 12, 165–179 (1974).Google Scholar
  7. 7.
    N. V. Troitskii, Sucrose hydrates in aqueous solutions, Sakharnaya Prom., No. 4, 38–39 (1947).Google Scholar
  8. 8.
    A. G. Pasynskii, Solvation of nonelectrolytes and compressibility of their solutions, Zh. Fiz. Khim., 20, No. 9, 981–994 (1946).Google Scholar
  9. 9.
    S. E. Kharin and A. A. Kniga, On aqueous sugar solutions, Izv. Vyssh. Uchebn. Zaved., Pishchevaya Tekhnol., No. 5, 47–51 (1963).Google Scholar
  10. 10.
    E. I. Akhumov, Hydration of sucrose in solutions, Zh. Prikl. Khim., 48, No. 2, 458–460 (1975).Google Scholar
  11. 11.
    V. I. Buravkeva, A. V. Zubchenko, and A. Ya. Oleinikova, On the problem of hydration of sugars, Izv. Vyssh. Uchebn. Zaved., Pishchevaya Tekhnol., No. 5, 129–131 (1977).Google Scholar
  12. 12.
    S. E. Kharin, G. S. Sorokina, and L. L. Kniga, Degree of hydration of sucrose in aqueous sugar solutions, Izv. Vyssh. Uchebn. Zaved., Pishchevaya Tekhnol., No. 4, 75–77 (1973).Google Scholar
  13. 13.
    E. A. Kolosovskaya, S. R. Loskutov, and B. S. Chudinov, Physical Principles of Interaction of Wood and Water [in Russian], Nauka, Novosibirsk (1989).Google Scholar
  14. 14.
    J. E. Carles and A. M. Scallan, The determination of the amount of bound water within cellulosic gels by NMR spectroscopy, J. Polym. Sci., 17, No. 6, 1855–1865 (1973).Google Scholar
  15. 15.
    D. Simatos, M. Faure, E. Bonjour, and M. Couch, Application of differential thermal analysis and differential scanning calorimetry in studying water in foods, in: R. B. Duckworth (Ed.), Water in Foods [Russian translation], Pishchevaya Promyshlennost′, Moscow (1980), pp. 156–170.Google Scholar
  16. 16.
    S. Deodar and Ph. Luner, Measuring the content of bound (nonfeeezing) water by the differential-scanning-calorimetry method, in: S. Rowland (Ed.), Water in Polymers [Russian translation], Mir, Moscow (1984), pp. 273–287.Google Scholar
  17. 17.
    O. Parniakov, O. Bals, F. J. Barba, V. Mykhailyk, N. Lebovka, and E. Vorobiev, Application of differential scanning calorimetry to estimate quality and nutritional properties of food products, Crit. Rev. Food Sci. Nutr., 58, No. 3, 362–385 (2016).Google Scholar
  18. 18.
    V. A. Mykhailyk, Yu. F. Snezhkin, and N. V. Dmitrenko, Investigation of the state of water in energy trees in the process of drying by differential scanning calorimetry, J. Eng. Phys. Thermophys., 88, No. 5, 1093–1099 (2015).CrossRefGoogle Scholar
  19. 19.
    Jean-Joseph Max and Camille Chapados, Sucrose hydrates in aqueous solution by IR spectroscopy, J. Phys. Chem. A, 105, No. 47, 10681–10688 (2001).CrossRefGoogle Scholar
  20. 20.
    F. Franks, The properties of aqueous solutions at temperatures below 0°C, in: F. Franks (Ed.), Water and Aqueous Solutions at Temperatures below 0°C [Russian translation], Naukova Dumka, Kiev (1985), pp. 176–276.Google Scholar
  21. 21.
    F. Franks, Water, ice, and solutions of simple molecules, in: R. B. Duckworth (Ed.), Water in Foods [Russian translation], Pishchevaya Promyshlennost′, Moscow (1980), pp. 14–32.Google Scholar
  22. 22.
    V. A. Mikhailik, E. O. Davydova, and V. V. Mank, Investigation of the hydration of sucrose by the low-temperature scanning calorimetry method, in: Thermodynamics of Organic Compounds [in Russian], Gor′kii (1989), pp. 76–80.Google Scholar
  23. 23.
    V. A. Mykhailyk, Experimental study of the hydration of sucrose, Naukovi Prats. Odes′sk. Nats. Akad. Kharch. Tekhnol., 2, No. 28, 370–373 (2006).Google Scholar
  24. 24.
    V. A. Mykhailyk, Application of thermal investigation methods in solving scientific and production energy-efficiency problems, Naukovi Prats. Odes′sk. Nats. Akad. Kharch. Tekhnol., 1, No. 31, 170–177 (2007).Google Scholar
  25. 25.
    R. S. Burdukova, M. N. Dadenkova, L. P. Zhmyrya, A. I. Orel, and B. S. Sluchanko, On certain properties of sugars and their aqueous solutions, Izv. Vyssh. Uchebn. Zaved., Pishchevaya Tekhnol., No. 3, 37–45 (1972).Google Scholar
  26. 26.
    L. D. Bobrivnyk, Technological aspects of hydration of sucrose, Naukovi Prats. UDUKhT, No. 7, 44–47 (2000).Google Scholar
  27. 27.
    V. A. Mikhailik, Behavioral features of solutions of sugars in dehydrating, in: Proc. Third Int. Sci.-Pract. Conf. "Modern Energy-Saving Thermal Technologies (Drying and Thermal-Wet Treatment of Materials) SÉTT-2008," September 16–20, 2008, Moscow–Tambov (2008), Vol. 1, pp. 240–242.Google Scholar
  28. 28.
    Yu. F. Snézhkin, L. V. Dekusha, N. S. Dubovikova, T. G. Grishchenko, L. I. Vorob′iov, and L. A. Boryak, Calorimeter Device for Determining the Specific Heat of Evaporation of Moisture and Organic Substances from Materials, Ukraine Patent No. 84075, G01 N25/26, G01 N25/28. Published 10.09.08. Bull. No.17.Google Scholar
  29. 29.
    N. S. Dubovikova, Yu. F. Snezhkin, L. V. Dekusha, and L. I. Vorob′ev, Thermometer device of simultaneous thermal analysis to determine specific evaporation heat, Prom. Teplotekh., 35, No. 2, 87–95 (2013).Google Scholar
  30. 30.
    W. Hemminger and G. W. H. Höhne, Calorimetry. Theory and Practice [Russian translation], Khimiya, Moscow (1990).Google Scholar
  31. 31.
    M. D. Veisband and V. I. Pronenko, Technique of Performing Metrological Works [in Russian], Tekhnika, Kiev (1986).Google Scholar
  32. 32.
    A. A. Aleksandrov and B. A. Grigor′ev, Tables of Thermophysical Properties of Water and Steam: a Handbook [in Russian], MÉI, Moscow (1999).Google Scholar
  33. 33.
    P. Honig (Ed.), Principles of Sugar Technology [Russian translation], Pishchepromizdat, Moscow (1961).Google Scholar
  34. 34.
    R. Ts. Mishchuk, L. G. Belostotskii, and S. I. Sagan′, Activation energy of formation of crystallization sites in a sugar solution, Sakharnaya Prom., No. 10, 28–30 (1983).Google Scholar
  35. 35.
    I. A. Kukharenko, New theory of solutions, in: I. A. Kukharenko (Ed.), Scientific-Research Department of Farm Production Technology, Vol. 1 [in Russian], Izd. Nauchn.-Issled. Kafedry Tekhnol Sel′skokhoz. Proizvodstv, Kiev (1924), pp. 10–14.Google Scholar
  36. 36.
    A. J. Nanassy and R. L. Desai, NMR shows how ammoniacal primer-sealers alter the hygroscopicity of wood, Wood Sci., 10, No. 4, 204–207 (1978).Google Scholar
  37. 37.
    L. D. Bobrovnik, A. M. Grekhov, and I. S. Gulyi, Energy characteristics of structures in aqueous solutions of sucrose, Zh. Strukt. Khim., 39, No. 5, 860–867 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Mikhailik
    • 1
    Email author
  • N. V. Dmitrenko
    • 1
  • Yu. F. Snezhkin
    • 1
  1. 1.Institute of Engineering Thermophysics, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations