Advertisement

Stability of Hydrogen Fluoride Under Water-Gas-Reaction Conditions

  • V. V. KapustinEmail author
  • D. S. Pashkevich
  • V. A. Talalov
  • D. A. Mukhortov
  • Yu. I. Alekseev
  • V. B. Petrov
  • P. S. Kambur
  • M. P. Kambur
  • O. N. Voznyuk
Article
  • 4 Downloads

The prime objective of the investigation was to prove the stability of hydrogen fluoride under water-gas-reaction conditions. Calculations of the thermodynamically equilibrium composition of substances in the system of elements C–H–F–O were conducted, and it has been shown that with excess carbon and at a temperature of 1000 to 2000 K, the basic components of the mixture are carbon mono- and dioxide, hydrogen, methane, and hydrogen fluoride, and carbon fluorides and oxyfluorides are absent. At a temperature above 1300 K, the thermodynamically equilibrium mixture consists of carbon monoxide, hydrogen, and hydrogen fluoride. Calculation results have been confirmed by laboratory experiments in which the only fluorine-containing substance, i.e., hydrogen fluoride, was found as part of the products of interaction of water and carbon in the presence of hydrogen fluoride at a temperature of the order of 1500 K. The obtained results can become a basis for the technology of obtaining anhydrous hydrogen fluoride from its aqueous solutions, including the azeotropic one, by high-temperature interaction of the steam and carbon at

Keywords

hydrogen fluoride carbon water-gas reaction heterogeneous combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    All-Union State Standard 14022-88, Anhydrous Hydrogen Fluoride. Specifications. Intr. 1990-01-01, Izd. Standartov, Moscow (1989).Google Scholar
  2. 2.
    A. A. Maslov, N. S. Turaev, and R. V. Ostval′d, Chemical Technology of Hydrogen Fluoride [in Russian], Izd. Tomskogo Politekhnicheskogo Univ., Tomsk (2012).Google Scholar
  3. 3.
    B. N. Maksimov, V. G. Barabanov, I. L. Serushkin, et al., Commercial Fluororganic Products [in Russian], Khimiya, Leningrad (1990).Google Scholar
  4. 4.
    J. M. Borgard, F. Herbelet, and B. Gwinner, Recycling hydrofl uoric acid in the nuclear industry: The Over Azeotropic Flash process (OVAF), J. Fluorine Chem., 185, 17–23 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Morel and B. Duperret, Uranium and fl uorine cycles in the nuclear industry, J. Fluorine Chem., 130, 7–10 (2009).CrossRefGoogle Scholar
  6. 6.
    D. S. Pashkevich, Methods to produce commercial fluorine compounds with depleted uranium hexafluoride, Proc. V Int. School Conference on Chemical Technology, May 16–20, 2016, Volgograd (2016), pp. 433–435.Google Scholar
  7. 7.
    A. V. Volosnev, O. B. Gromov, M. V. Medvedev, et al., Method for Producing Anhydrous Hydrogen Fluoride and Hydrofluoric Acid, RF Patent No. 2447013, C01B7/19. Published 10.04.2012.Google Scholar
  8. 8.
    J. Eicher, W. Rudolph, and B. Schulte, Process for Working up a Hydrogen Fluoride Phase from a Fluorination Reaction Mixture, United States Patent 5.300.709, C07C 17/08, April 5, 1994.Google Scholar
  9. 9.
    V. M. Potekhin and V. V. Potekhin, Foundations of the Theory of Chemical Processes of the Technology of Organic Substances and Oil Refining [in Russian], Khimizdat, St. Petersburg (2007).Google Scholar
  10. 10.
    V. V. Kopytov, Gasification of Condensed Fuels: Lookback, Current Status, and Outlook for Future Development [in Russian], Infra-Inzheneriya, Moscow (2007).Google Scholar
  11. 11.
    V. G. Barabanov and S. I. Ozols, Pyrolysis Methods for Obtaining Fluorine-Containing Olefins [in Russian], Teza, St. Petersburg (2000).Google Scholar
  12. 12.
    Ch. D. Hurd, The Pyrolysis of Carbon Compounds [Russian translation], GONTI TKTP SSSR, Leningrad–Moscow (1938).Google Scholar
  13. 13.
    N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vysshaya Shkola, Moscow (2003).Google Scholar
  14. 14.
    G. Brauer, Handbook of Preparative Inorganic Chemistry [Russian translation], Mir, Moscow (1985).Google Scholar
  15. 15.
    F. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Vol. 2 [Russian translation], Mir, Moscow (1969).Google Scholar
  16. 16.
    Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 10, John Wiley & Sons, New York (1980).Google Scholar
  17. 17.
    D. Mestepi, Method for Reducing Anhydrous Hydrogen Fluoride from Depleted Uranium Hexafluoride, RF Patent No. 2126362, C01B7/19. Published 20.02.1999.Google Scholar
  18. 18.
    A. E. Chichibabin, Fundamental Principles of Organic Chemistry, Vol. 1 [in Russian], Gosudarstvennoe Nauchno-Tekhnicheskoe Izd. Khimicheskoi Literatury, Moscow (1954).Google Scholar
  19. 19.
    K. D. Nenitsesku, Organic Chemistry, Vol. 1 [in Russian], Izd. Inostrannoi Literatury, Moscow (1963).Google Scholar
  20. 20.
    I. V. Nikitin, Oxygen-containing halogen acids HOHal, Usp. Khim., 73, No. 6, 662–672 (2004).CrossRefGoogle Scholar
  21. 21.
    N. Ishikawa and Y. Kobayashi, Fluorine. Chemistry and Applications [Russian translation], Mir, Moscow (1982).Google Scholar
  22. 22.
    J. Simons, Fluorine and Its Compounds [Russian translation], Izd. Inostrannoi Literatury, Moscow (1953).Google Scholar
  23. 23.
    V. M. Kudryavtsev and A. P. Vasil′ev, Foundations of the Theory and Calculation of Liquid-Propellant Rocket Engines [in Russian], Vysshaya Shkola, Moscow (1993).Google Scholar
  24. 24.
    L. V. Gurvich, I. V. Veits, M. V. Medvedev, et al., Thermodynamic Properties of Individual Substances [in Russian], Nauka, Moscow (1978).Google Scholar
  25. 25.
    V. S. Al′tshuler, G. v. Klirikov, M. V. Medvedev, et al., The Thermodynamics of Processes to Obtain Gases of Assigned Composition from Combustible Fossils [in Russian], Nauka, Moscow (1969).Google Scholar
  26. 26.
    V. E. Zinoviev, Thermodynamic Properties of Metals at High Temperatures [in Russian], Metallurgiya, Moscow (1989).Google Scholar
  27. 27.
    N. B. Vargaftik, Handbook of Thermodynamic Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Kapustin
    • 1
    Email author
  • D. S. Pashkevich
    • 1
  • V. A. Talalov
    • 1
  • D. A. Mukhortov
    • 2
  • Yu. I. Alekseev
    • 3
  • V. B. Petrov
    • 2
  • P. S. Kambur
    • 2
  • M. P. Kambur
    • 2
  • O. N. Voznyuk
    • 2
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Russian Scientific Center “Applied Chemistry”St. PetersburgRussia
  3. 3.Limited Liability Company “New Chemical Products”St. PetersburgRussia

Personalised recommendations