Advertisement

Interaction of a Liquid Aerosol with the Combustion Front of a Forest Combustible Material Under the Conditions of Countercurrent Air Flow

  • A. O. ZhdanovaEmail author
  • G. V. Kuznetsov
  • G. S. Nyashina
  • I. S. Voitkov
Article
  • 1 Downloads

Experimental investigations on the characteristic times of suppression of the flame combustion and thermal decomposition of wastes of coniferous and deciduous forest trees under the action of a liquid aerosol have been performed. As forest combustible materials, birch leaves and a mixture of components of a forest ground cover (leaves, needles, twigs) were used. Three schemes of interaction of a water droplet flow with a forest combustible material in the process of its burning were considered: the first scheme in which a material is preliminary moistened by the water sprayed upstream of its combustion front, the second scheme in which a liquid aerosol is supplied directly to the combustion front, and the third combined scheme in which water is sprayed upstream of the combustion front and over it. The influence of a favoring and an adverse air flows on the termination of combustion of a model fire hotbed was investigated. The conditions of spraying of water over forest combustible materials, providing the suppression of their flame combustion and thermal decomposition, were determined.

Keywords

forest combustible material flame combustion thermal decomposition combustion front aerosol flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Prichard, C. S. Stevens-Rumann, and P. F. Hessburg, Shifting global fire regimes: Lessons from reburns and research needs, Forest Ecol. Manage., 396, 217–233 (2017).CrossRefGoogle Scholar
  2. 2.
    T. J. Duff and K. G. Tolhurst, Operational wildfire suppression modelling: A review evaluating development, state of the art and future directions, Int. J. Wildland Fire, 24, No. 6, 735–748 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Volokitina, M. Sofronov, and T. Sofronova, Topical scientific and practical issues of wildland fire problem, Mitigat. Adapt. Strateg. Global Change, 13, No. 7, 661–674 (2008).CrossRefGoogle Scholar
  4. 4.
    A. M. Grishin, A. S. Yakimov, G. Rein, and A. Simeoni, On physical and mathematical modeling of the initiation and propagation of peat fires, J. Eng. Phys. Thermophys., 82, No. 6, 1235–1243 (2009).CrossRefGoogle Scholar
  5. 5.
    A. A. Dolgov, Laboratory investigations of the composition and determination of the coefficients of emission of the products of burning of forest materials, J. Eng. Phys. Thermophys., 77, No. 6, 1253–1258 (2004).CrossRefGoogle Scholar
  6. 6.
    I. R. Khasanov, V. S. Gorshkov, and E. A. Moskvilin, Parameters of the suppression of forest fires into which water is thrown down from aircraft, in: Proc. Int. Conf. "Forest and Steppe Fires: Appearance, Propagation, Suppression, and Subsequences for the Environment," 25–29 September 2001, Irkutsk (2001), pp. 157–158.Google Scholar
  7. 7.
    N. P. Kopylov, I. R. Khasanov, A. E. Kuznetsov, D. V. Fedotkin, E. A. Moskvilin, P. A. Strizhak, and V. N. Karpov, Parameters of the throw-down of water from aircraft in the suppression of forest fires, Pozhar. Bezopasnost′, No. 2, 49–55 (2015).Google Scholar
  8. 8.
    I. R. Khasanov and E. A. Moskvilin, Aviation methods of suppression of large forest fires, in: Proc. XV Sci.-Pract. Conf. "Problems of Combustion and Suppression of Fires at the Turn of the Century," Moscow (1999), Part 1, pp. 300–301.Google Scholar
  9. 9.
    V. S. Gorshkov, E. A. Moskvilin, and I. R. Khasanov, Estimation of the parameters of the suppression of forest fires by aviation means, in: Proc. Sci.-Pract. Conf. "Problems of Prediction of Emergency Situations and of Their Sources," Moscow (2001), pp. 34–35.Google Scholar
  10. 10.
    A. I. Karpov, V. B. Novozhilov, A. A. Galat, and V. K. Bulgakov, Numerical modeling of the effect of fine water mist on the small scale flame spreading over solid combustibles, in: Proc. Eight Int. Symp.Fire Safety Science, Beijing, China (2005), Vol. 27, pp. 753–764.Google Scholar
  11. 11.
    A. N. Kovalev and L. A. Zhuravleva, Promising directions of suppression of ground forest and steppe fires, Nauch. Zhizn′, No. 4, 153–157 (2012).Google Scholar
  12. 12.
    N. V. Baranovskii and G. V. Kuznetsov, Prediction of the Occurrence of Forest Fires and Their Consequences for the Environment [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2009).Google Scholar
  13. 13.
    G. A. Dorrer, Mathematical Models of the Dynamics of Forest Fires [in Russian], Lesnaya Promyshlennost′, Moscow (1979).Google Scholar
  14. 14.
    A. M. Grishin, Mathematical Models of Forest Fires [in Russian], Izd. Tomsk. Gos. Univ., Tomsk (1981).Google Scholar
  15. 15.
    A. M. Grishin, A. N. Golovanov, and V. V. Medvedev, Oscillation of the elements of combustible forest materials and its effect on ignition and combustion, J. Appl. Mech. Tech. Phys., 42, No. 4, 672–679 (2001).CrossRefGoogle Scholar
  16. 16.
    S. W. Taylor, B. M. Wotton, M. E. Alexander, and G. N. Dalrymple, Variation in wind and crown fire behaviour in a northern jack pine — black spruce forest, Canad. J. Forest Res., 34, No. 8, 1561–1576 (2004).CrossRefGoogle Scholar
  17. 17.
    E. Y. Novenko, A. N. Tsyganov, E. M. Volkova, D. A. Kupriyanov, I. V. Mironenko, K. V. Babeshko, A. S. Utkina, V. Popov, and Y. A. Mazei, Mid- and late holocene vegetation dynamics and fire history in the boreal forest of European Russia: A case study from Meshchera Lowlands, Palaeogeogr., Palaeoclimat., Palaeoecol., 459, 570–584 (2016).Google Scholar
  18. 18.
    I. S. Voitkov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and V. E. Nakoryakov, Physicochemical processes in the interaction of aerosol with the combustion front of forest fuel materials, J. App. Mech. Tech. Phys., 59, No. 5, 891–902 (2018).CrossRefGoogle Scholar
  19. 19.
    Self-Acting Facilities of Water and Foam Fir Extinguishing, Spraying, General Technical Requirements, Methods of Testing, State Standard R 51043-2002 (2002).Google Scholar
  20. 20.
    R. S. Volkov, A. O. Zhdanova, G. S. Nyashina, and I. R. Khasanov, Influence of the aerosol-droplet size on the time of termination of the thermal decomposition of a forest combustible material, Pozhar. Bezopasnost′, No. 1, 73–79 (2017).Google Scholar
  21. 21.
    R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Determination of the volume of water for suppressing the thermal decomposition of forest combustibles, J. Eng. Phys. Thermophys., 90, No. 4, 789–796 (2017).CrossRefGoogle Scholar
  22. 22.
    D. V. Antonov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the conditions for quenching forest combustible materials, J. Eng. Phys. Thermophys., 90, No. 3, 511–520 (2017).CrossRefGoogle Scholar
  23. 23.
    G. V. Kuznetsov, P. A. Strizhak, R. S. Volkov, and A. O. Zhdanova, Amount of water sufficient to suppress thermal decomposition of forest fuel, J. Mech., 1–9 (2017); DOI:  https://doi.org/10.1017/jmech.2017.13.
  24. 24.
    A. O. Zhdanova, G. V. Kuznetsov, J. C. Legros, and P. A. Strizhak, Thermal conditions for stopping pyrolysis of forest combustible material and applications to firefighting, Therm. Sci., 21, No. 6, 2565–2577 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. O. Zhdanova
    • 1
    Email author
  • G. V. Kuznetsov
    • 1
  • G. S. Nyashina
    • 1
  • I. S. Voitkov
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations